Exercise: 4-E
Q1: Find the product: \(\frac{5}{7} \times \frac{2}{3}\)
Step 1: Write the multiplication:
\[
\frac{5}{7} \times \frac{2}{3}
\]Step 2: Multiply numerators and denominators:
\[
\text{Numerator} = 5 \times 2 = 10 \\
\text{Denominator} = 7 \times 3 = 21
\]So,
\[
\frac{5}{7} \times \frac{2}{3} = \frac{10}{21}
\]Answer: \(\frac{10}{21}\)
Q2: Find the product: \(\frac{3}{5} \times \frac{4}{9}\)
Step 1: Write the multiplication:
\[
\frac{3}{5} \times \frac{4}{9}
\]Step 2: Simplify by cancelling any common factors between numerators and denominators.
– Numerator 3 and denominator 9 have a common factor 3:
\[
3 \div 3 = 1, \quad 9 \div 3 = 3
\]No other common factors.
So, multiplication becomes:
\[
\frac{1}{5} \times \frac{4}{3}
\]Step 3: Multiply numerators and denominators:
\[
\frac{1 \times 4}{5 \times 3} = \frac{4}{15}
\]Answer: \(\frac{4}{15}\)
Q3: Find the product: \(\frac{12}{35} \times \frac{14}{27}\)
Step 1: Write the multiplication:
\[
\frac{12}{35} \times \frac{14}{27}
\]Step 2: Simplify by cancelling common factors between numerators and denominators before multiplying.
– Numerator 12 and denominator 27:
\[
12 = 2^2 \times 3, \quad 27 = 3^3
\]Common factor: 3
\[
12 \div 3 = 4, \quad 27 \div 3 = 9
\]– Numerator 14 and denominator 35:
\[
14 = 2 \times 7, \quad 35 = 5 \times 7
\]Common factor: 7
\[
14 \div 7 = 2, \quad 35 \div 7 = 5
\]After simplification, multiplication becomes:
\[
\frac{4}{5} \times \frac{2}{9}
\]Step 3: Multiply numerators and denominators:
\[
\frac{4 \times 2}{5 \times 9} = \frac{8}{45}
\]Answer: \(\frac{8}{45}\)
Q4: Find the product: \(\frac{30}{51} \times \frac{17}{25}\)
Step 1: Write the multiplication of fractions.
\[
\frac{30}{51} \times \frac{17}{25}
\]Step 2: Simplify by dividing numerator and denominator with common factors before multiplying.
– Numerator of first fraction = 30
– Denominator of second fraction = 25
Common factors: 5
\[
30 \div 5 = 6, \quad 25 \div 5 = 5
\]– Numerator of second fraction = 17
– Denominator of first fraction = 51
Check common factors between 17 and 51.
17 is a prime number and 51 = 3 × 17
So,
\[
17 \div 17 = 1, \quad 51 \div 17 = 3
\]After simplification, fractions become:
\[
\frac{6}{3} \times \frac{1}{5}
\]Step 3: Simplify \(\frac{6}{3}\)
\[
\frac{6}{3} = 2
\]So multiplication becomes:
\[
2 \times \frac{1}{5} = \frac{2}{5}
\]Answer: \(\frac{2}{5}\)
Q5: Find the product: \(\frac{9}{16} \times \frac{14}{15}\)
Step 1: Write the multiplication:
\[
\frac{9}{16} \times \frac{14}{15}
\]Step 2: Simplify before multiplying to make calculation easier:
– Numerator 9 and denominator 15 share a common factor 3:
\[
9 \div 3 = 3, \quad 15 \div 3 = 5
\]– Numerator 14 and denominator 16 share a common factor 2:
\[
14 \div 2 = 7, \quad 16 \div 2 = 8
\]Now the multiplication becomes:
\[
\frac{3}{8} \times \frac{7}{5}
\]Step 3: Multiply numerators and denominators:
\[
\text{Numerator} = 3 \times 7 = 21 \\
\text{Denominator} = 8 \times 5 = 40
\]So,
\[
\frac{9}{16} \times \frac{14}{15} = \frac{21}{40}
\]Answer: \(\frac{21}{40}\)
Q6: Find the product: \(2\frac{11}{27} \times 18\)
Step 1: Convert the mixed fraction \(2\frac{11}{27}\) to an improper fraction:
\[
2\frac{11}{27} = \frac{2 \times 27 + 11}{27} = \frac{54 + 11}{27} = \frac{65}{27}
\]Step 2: Write the multiplication as:
\[
\frac{65}{27} \times 18
\]Step 3: Express 18 as a fraction:
\[
18 = \frac{18}{1}
\]So,
\[
\frac{65}{27} \times \frac{18}{1}
\]Step 4: Simplify before multiplying:
– Numerator 18 and denominator 27 share a common factor 9:
\[
18 \div 9 = 2, \quad 27 \div 9 = 3
\]Now the multiplication becomes:
\[
\frac{65}{3} \times \frac{2}{1}
\]Step 5: Multiply numerators and denominators:
\[
\text{Numerator} = 65 \times 2 = 130 \\
\text{Denominator} = 3 \times 1 = 3
\]So,
\[
2\frac{11}{27} \times 18 = \frac{130}{3}
\]Step 6: Convert the improper fraction \(\frac{130}{3}\) back to a mixed number:
\[
130 \div 3 = 43 \text{ remainder } 1
\]Thus,
\[
\frac{130}{3} = 43 \frac{1}{3}
\]Answer: \(43 \frac{1}{3}\)
Q7: Find the product: \(7\frac{1}{12} \times \frac{8}{17}\)
Step 1: Convert the mixed fraction \(7\frac{1}{12}\) to an improper fraction:
\[
7\frac{1}{12} = \frac{7 \times 12 + 1}{12} = \frac{84 + 1}{12} = \frac{85}{12}
\]Step 2: Write the multiplication as:
\[
\frac{85}{12} \times \frac{8}{17}
\]Step 3: Simplify before multiplying:
– Numerator 85 and denominator 17 share a common factor 17:
\[
85 \div 17 = 5, \quad 17 \div 17 = 1
\]– Numerator 8 and denominator 12 share a common factor 4:
\[
8 \div 4 = 2, \quad 12 \div 4 = 3
\]Now the multiplication becomes:
\[
\frac{5}{3} \times \frac{2}{1}
\]Step 4: Multiply numerators and denominators:
\[
\text{Numerator} = 5 \times 2 = 10 \\
\text{Denominator} = 3 \times 1 = 3
\]So,
\[
7\frac{1}{12} \times \frac{8}{17} = \frac{10}{3}
\]Step 5: Convert the improper fraction \(\frac{10}{3}\) back to a mixed number:
\[
10 \div 3 = 3 \text{ remainder } 1
\]Thus,
\[
\frac{10}{3} = 3 \frac{1}{3}
\]Answer: \(3 \frac{1}{3}\)
Q8: Find the product: \(8\frac{1}{21} \times 1\frac{1}{13}\)
Step 1: Convert the mixed fractions to improper fractions:
\[
8\frac{1}{21} = \frac{8 \times 21 + 1}{21} = \frac{168 + 1}{21} = \frac{169}{21} \\
1\frac{1}{13} = \frac{1 \times 13 + 1}{13} = \frac{13 + 1}{13} = \frac{14}{13}
\]Step 2: Write the multiplication:
\[
\frac{169}{21} \times \frac{14}{13}
\]Step 3: Simplify before multiplying:
– Numerator 169 and denominator 13 share a common factor 13:
\[
169 \div 13 = 13, \quad 13 \div 13 = 1
\]– Numerator 14 and denominator 21 share a common factor 7:
\[
14 \div 7 = 2, \quad 21 \div 7 = 3
\]Now the multiplication becomes:
\[
\frac{13}{3} \times \frac{2}{1}
\]Step 4: Multiply numerators and denominators:
\[
\text{Numerator} = 13 \times 2 = 26 \\
\text{Denominator} = 3 \times 1 = 3
\]So,
\[
8\frac{1}{21} \times 1\frac{1}{13} = \frac{26}{3}
\]Step 5: Convert the improper fraction \(\frac{26}{3}\) to a mixed number:
\[
26 \div 3 = 8 \text{ remainder } 2
\]Thus,
\[
\frac{26}{3} = 8 \frac{2}{3}
\]Answer: \(8 \frac{2}{3}\)
Q9: Find the product: \(7\frac{7}{11} \times 6\frac{3}{16}\)
Step 1: Convert the mixed fractions to improper fractions:
\[
7\frac{7}{11} = \frac{7 \times 11 + 7}{11} = \frac{77 + 7}{11} = \frac{84}{11} \\
6\frac{3}{16} = \frac{6 \times 16 + 3}{16} = \frac{96 + 3}{16} = \frac{99}{16}
\]Step 2: Write the multiplication:
\[
\frac{84}{11} \times \frac{99}{16}
\]Step 3: Simplify before multiplying:
– Numerator 84 and denominator 16 share a common factor 4:
\[
84 \div 4 = 21, \quad 16 \div 4 = 4
\]– Numerator 99 and denominator 11 share a common factor 11:
\[
99 \div 11 = 9, \quad 11 \div 11 = 1
\]Now the multiplication becomes:
\[
\frac{21}{1} \times \frac{9}{4}
\]Step 4: Multiply numerators and denominators:
\[
\text{Numerator} = 21 \times 9 = 189 \\
\text{Denominator} = 1 \times 4 = 4
\]So,
\[
7\frac{7}{11} \times 6\frac{3}{16} = \frac{189}{4}
\]Step 5: Convert the improper fraction \(\frac{189}{4}\) to a mixed number:
\[
189 \div 4 = 47 \text{ remainder } 1
\]Thus,
\[
\frac{189}{4} = 47 \frac{1}{4}
\]Answer: \(47 \frac{1}{4}\)
Q10: Find the product: \(11\frac{1}{4} \times 6\frac{7}{9}\)
Step 1: Convert mixed fractions to improper fractions:
\[
11\frac{1}{4} = \frac{11 \times 4 + 1}{4} = \frac{44 + 1}{4} = \frac{45}{4} \\
6\frac{7}{9} = \frac{6 \times 9 + 7}{9} = \frac{54 + 7}{9} = \frac{61}{9}
\]Step 2: Multiply the improper fractions:
\[
\frac{45}{4} \times \frac{61}{9}
\]Step 3: Simplify before multiplication:
– 45 and 9 share a common factor 9:
\[
45 \div 9 = 5, \quad 9 \div 9 = 1
\]– No other common factors between numerator and denominator.
So multiplication becomes:
\[
\frac{5}{4} \times \frac{61}{1} = \frac{5 \times 61}{4 \times 1} = \frac{305}{4}
\]Step 4: Convert \(\frac{305}{4}\) to a mixed number:
\[
305 \div 4 = 76 \text{ remainder } 1
\]So,
\[
\frac{305}{4} = 76 \frac{1}{4}
\]Answer: \(76 \frac{1}{4}\)
Q11: Find the product: \(1\frac{3}{4} \times 2\frac{1}{7} \times 4\frac{4}{5}\)
Step 1: Convert mixed fractions to improper fractions:
\[
1\frac{3}{4} = \frac{1 \times 4 + 3}{4} = \frac{7}{4} \\
2\frac{1}{7} = \frac{2 \times 7 + 1}{7} = \frac{15}{7} \\
4\frac{4}{5} = \frac{4 \times 5 + 4}{5} = \frac{24}{5}
\]Step 2: Multiply the three improper fractions:
\[
\frac{7}{4} \times \frac{15}{7} \times \frac{24}{5}
\]Step 3: Simplify before multiplication:
– Cancel \(7\) in numerator and denominator:
\[
\frac{7}{4} \times \frac{15}{7} \times \frac{24}{5}
\]– Cancel 15 and 5 (since \(15 = 3 \times 5\)):
\[
\frac{1}{4} \times \frac{3 \times \ 5}{1} \times \frac{24}{5} = \frac{1}{4} \times 3 \times 24
\]– Cancel 24 and 4 (since \(24 = 6 \times 4\)):
\[
\frac{1}{4} \times 3 \times \frac{6 \times \ 4}{1} = 1 \times 3 \times 6 = 18
\]Answer: 18
Q12: Find the product: \(3\frac{1}{6} \times 2\frac{3}{4} \times 2\frac{4}{11}\)
Step 1: Convert mixed fractions to improper fractions:
\[
3\frac{1}{6} = \frac{3 \times 6 + 1}{6} = \frac{19}{6} \\
2\frac{3}{4} = \frac{2 \times 4 + 3}{4} = \frac{11}{4} \\
2\frac{4}{11} = \frac{2 \times 11 + 4}{11} = \frac{26}{11}
\]Step 2: Multiply the three improper fractions:
\[
\frac{19}{6} \times \frac{11}{4} \times \frac{26}{11}
\]Step 3: Simplify before multiplication:
– Cancel 11 in numerator and denominator:
\[
\frac{19}{6} \times \frac{11}{4} \times \frac{26}{11} = \frac{19}{6} \times \frac{1}{4} \times 26
\]Step 4: Multiply the numerators and denominators:
\[
\frac{19 \times 1 \times 26}{6 \times 4 \times 1} = \frac{494}{24}
\]Step 5: Simplify the fraction \(\frac{494}{24}\):– Find the GCD of 494 and 24, which is 2.
\[
\frac{494 \div 2}{24 \div 2} = \frac{247}{12}
\]Step 6: Convert \(\frac{247}{12}\) to a mixed fraction:
\[
247 \div 12 = 20 \text{ remainder } 7
\]So,
\[
\frac{247}{12} = 20\frac{7}{12}
\]Answer: \(20\frac{7}{12}\)
Q13: Find the reciprocal of:
i. \(\frac{5}{9}\)
Step 1: Recall the reciprocal of a fraction \(\frac{a}{b}\) is \(\frac{b}{a}\).
Here, reciprocal of \(\frac{5}{9}\) is \(\frac{9}{5}\).
Answer: \(\frac{9}{5}\)
ii. \(\frac{7}{13}\)
Step 1: Reciprocal of \(\frac{7}{13}\) is \(\frac{13}{7}\).
Answer: \(\frac{13}{7}\)
iii. \(8\) (Whole number)
Step 1: Whole number \(8\) can be written as \(\frac{8}{1}\).
Step 2: Reciprocal of \(\frac{8}{1}\) is \(\frac{1}{8}\).
Answer: \(\frac{1}{8}\)
iv. \(\frac{1}{5}\)
Step 1: Reciprocal of \(\frac{1}{5}\) is \(\frac{5}{1} = 5\).
Answer: 5
v. \(3\frac{2}{5}\) (Mixed fraction)
Step 1: Convert mixed fraction to improper fraction:
\[
3\frac{2}{5} = \frac{3 \times 5 + 2}{5} = \frac{15 + 2}{5} = \frac{17}{5}
\]
Step 2: Reciprocal of \(\frac{17}{5}\) is \(\frac{5}{17}\).
Answer: \(\frac{5}{17}\)
vi. \(8\frac{1}{9}\) (Mixed fraction)
Step 1: Convert mixed fraction to improper fraction:
\[
8\frac{1}{9} = \frac{8 \times 9 + 1}{9} = \frac{72 + 1}{9} = \frac{73}{9}
\]
Step 2: Reciprocal of \(\frac{73}{9}\) is \(\frac{9}{73}\).
Answer: \(\frac{9}{73}\)
vii. \(5\frac{3}{8}\) (Mixed fraction)
Step 1: Convert mixed fraction to improper fraction:
\[
5\frac{3}{8} = \frac{5 \times 8 + 3}{8} = \frac{40 + 3}{8} = \frac{43}{8}
\]
Step 2: Reciprocal of \(\frac{43}{8}\) is \(\frac{8}{43}\).
Answer: \(\frac{8}{43}\)
viii. \(23\) (Whole number)
Step 1: Write \(23\) as \(\frac{23}{1}\).
Step 2: Reciprocal of \(\frac{23}{1}\) is \(\frac{1}{23}\).
Answer: \(\frac{1}{23}\)
Q14: Divide: \(\frac{13}{21} \div \frac{2}{7}\)
Step 1: Recall the rule:
To divide two fractions, multiply the first fraction by the reciprocal of the second.
\[
\frac{13}{21} \div \frac{2}{7} = \frac{13}{21} \times \frac{7}{2}
\]Step 2: Multiply the numerators and the denominators:
\[
= \frac{13 \times 7}{21 \times 2} = \frac{91}{42}
\]Step 3: Simplify the fraction by dividing both numerator and denominator by the common factor 7:
\[
\frac{91 \div 7}{42 \div 7} = \frac{13}{6}
\]Answer: \(\frac{13}{6}\) or \(2\frac{1}{6}\)
Q15: Divide: \(3\frac{1}{8} \div 5\)
Step 1: Convert the mixed number \(3\frac{1}{8}\) into an improper fraction.
\[
3\frac{1}{8} = \frac{(3 \times 8 + 1)}{8} = \frac{25}{8}
\]Step 2: Divide \(\frac{25}{8}\) by 5. Dividing by 5 is the same as multiplying by \(\frac{1}{5}\):
\[
\frac{25}{8} \div 5 = \frac{25}{8} \times \frac{1}{5}
\]Step 3: Multiply the numerators and the denominators:
\[
= \frac{25 \times 1}{8 \times 5} = \frac{25}{40}
\]Step 4: Simplify the fraction \(\frac{25}{40}\) by dividing numerator and denominator by 5:
\[
\frac{25 \div 5}{40 \div 5} = \frac{5}{8}
\]Answer: \(\frac{5}{8}\)
Q16: Divide: \(1 \div 2\frac{3}{5}\)
Step 1: Convert the mixed number \(2\frac{3}{5}\) into an improper fraction.
\[
2\frac{3}{5} = \frac{(2 \times 5 + 3)}{5} = \frac{13}{5}
\]Step 2: Now divide 1 by \(\frac{13}{5}\). Dividing by a fraction is the same as multiplying by its reciprocal:
\[
1 \div \frac{13}{5} = 1 \times \frac{5}{13}
\]Step 3: Multiply the numerators and the denominators:
\[
= \frac{1 \times 5}{1 \times 13} = \frac{5}{13}
\]Answer: \(\frac{5}{13}\)
Q17: Divide: \(7\frac{5}{9} \div 34\)
Step 1: Convert the mixed number \(7\frac{5}{9}\) into an improper fraction.
\[
7\frac{5}{9} = \frac{(7 \times 9 + 5)}{9} = \frac{63 + 5}{9} = \frac{68}{9}
\]Step 2: Express 34 as a fraction:
\[
34 = \frac{34}{1}
\]Step 3: Divide \(\frac{68}{9}\) by \(\frac{34}{1}\) by multiplying \(\frac{68}{9}\) by the reciprocal of \(\frac{34}{1}\):
\[
\frac{68}{9} \div \frac{34}{1} = \frac{68}{9} \times \frac{1}{34}
\]Step 4: Simplify before multiplying:
\[
\frac{68}{9} \times \frac{1}{34} = \frac{68 \div 34}{9 \times 1} = \frac{2}{9}
\]Answer: \(\frac{2}{9}\)
Q18: Divide: \(70 \div 8\frac{2}{5}\)
i. Division of a whole number by a mixed number
Step 1: Convert the mixed number \(8\frac{2}{5}\) into an improper fraction.
\[
8\frac{2}{5} = \frac{(8 \times 5 + 2)}{5} = \frac{40 + 2}{5} = \frac{42}{5}
\]Step 2: Express 70 as a fraction:
\[
70 = \frac{70}{1}
\]Step 3: Divide \(\frac{70}{1}\) by \(\frac{42}{5}\) by multiplying \(\frac{70}{1}\) by the reciprocal of \(\frac{42}{5}\):
\[
\frac{70}{1} \div \frac{42}{5} = \frac{70}{1} \times \frac{5}{42}
\]Step 4: Simplify before multiplying:
\[
= \frac{70 \times 5}{1 \times 42} = \frac{350}{42}
\]Simplify numerator and denominator by 14:
\[
\frac{350 \div 14}{42 \div 14} = \frac{25}{3}
\]Step 5: Convert the improper fraction \(\frac{25}{3}\) to a mixed number:
\[
\frac{25}{3} = 8 \frac{1}{3}
\]Answer: \(8 \frac{1}{3}\)
Q19: Divide: \(4\frac{1}{2} \div 6\frac{1}{2}\)
Step 1: Convert both mixed numbers into improper fractions.
\[
4\frac{1}{2} = \frac{(4 \times 2) + 1}{2} = \frac{8 + 1}{2} = \frac{9}{2} \\
6\frac{1}{2} = \frac{(6 \times 2) + 1}{2} = \frac{12 + 1}{2} = \frac{13}{2}
\]Step 2: Divide \(\frac{9}{2}\) by \(\frac{13}{2}\) by multiplying \(\frac{9}{2}\) by the reciprocal of \(\frac{13}{2}\):
\[
\frac{9}{2} \div \frac{13}{2} = \frac{9}{2} \times \frac{2}{13}
\]Step 3: Simplify before multiplying:
\[
= \frac{9 \times 2}{2 \times 13} = \frac{18}{26}
\]Simplify numerator and denominator by 2:
\[
\frac{18 \div 2}{26 \div 2} = \frac{9}{13}
\]Answer: \(\frac{9}{13}\)
Q20: Divide: \(5\frac{7}{10} \div 3\frac{1}{6}\)
Step 1: Convert both mixed numbers into improper fractions.
\[
5\frac{7}{10} = \frac{(5 \times 10) + 7}{10} = \frac{50 + 7}{10} = \frac{57}{10} \\
3\frac{1}{6} = \frac{(3 \times 6) + 1}{6} = \frac{18 + 1}{6} = \frac{19}{6}
\]Step 2: Divide \(\frac{57}{10}\) by \(\frac{19}{6}\) by multiplying \(\frac{57}{10}\) by the reciprocal of \(\frac{19}{6}\):
\[
\frac{57}{10} \div \frac{19}{6} = \frac{57}{10} \times \frac{6}{19}
\]Step 3: Multiply the numerators and denominators:
\[
= \frac{57 \times 6}{10 \times 19} = \frac{342}{190}
\]Step 4: Simplify the fraction \(\frac{342}{190}\):
Divide numerator and denominator by 2:
\[
\frac{342 \div 38}{190 \div 38} = \frac{9}{5}
\]Step 5: Convert the improper fraction to a mixed number:
\[
\frac{9}{5} = 1\frac{4}{5}
\]Answer: \(1\frac{4}{5}\)
Q21: Divide: \(10\frac{5}{7} \div 1\frac{11}{14}\)
Step 1: Convert the mixed numbers into improper fractions.
\[
10\frac{5}{7} = \frac{(10 \times 7) + 5}{7} = \frac{70 + 5}{7} = \frac{75}{7} \\
1\frac{11}{14} = \frac{(1 \times 14) + 11}{14} = \frac{14 + 11}{14} = \frac{25}{14}
\]Step 2: Divide \(\frac{75}{7}\) by \(\frac{25}{14}\) by multiplying by the reciprocal:
\[
\frac{75}{7} \div \frac{25}{14} = \frac{75}{7} \times \frac{14}{25}
\]Step 3: Multiply numerators and denominators:
\[
= \frac{75 \times 14}{7 \times 25} = \frac{1050}{175}
\]Step 4: Simplify the fraction:
Divide numerator and denominator by 25:
\[
\frac{1050 \div 25}{175 \div 25} = \frac{42}{7}
\]Divide numerator and denominator by 7:
\[
\frac{42 \div 7}{7 \div 7} = \frac{6}{1} = 6
\]Answer: 6
Q22: Divide: \(15\frac{8}{9} \div 3\frac{2}{3}\)
Step 1: Convert the mixed numbers into improper fractions.
\[
15\frac{8}{9} = \frac{(15 \times 9) + 8}{9} = \frac{135 + 8}{9} = \frac{143}{9} \\
3\frac{2}{3} = \frac{(3 \times 3) + 2}{3} = \frac{9 + 2}{3} = \frac{11}{3}
\]Step 2: Divide \(\frac{143}{9}\) by \(\frac{11}{3}\) by multiplying by the reciprocal:
\[
\frac{143}{9} \div \frac{11}{3} = \frac{143}{9} \times \frac{3}{11}
\]Step 3: Multiply numerators and denominators:
\[
= \frac{143 \times 3}{9 \times 11} = \frac{429}{99}
\]Step 4: Simplify the fraction:
Divide numerator and denominator by 11:
\[
\frac{429 \div 11}{99 \div 11} = \frac{39}{9}
\]Simplify further by dividing numerator and denominator by 3:
\[
\frac{39 \div 3}{9 \div 3} = \frac{13}{3}
\]Step 5: Convert improper fraction back to mixed number:
\[
\frac{13}{3} = 4\frac{1}{3}
\]Answer: \(4\frac{1}{3}\)
Q23: Divide: \(9\frac{4}{5} \div 3\frac{23}{25}\)
i. Division of two mixed numbers
Step 1: Convert the mixed numbers into improper fractions.
\[
9\frac{4}{5} = \frac{(9 \times 5) + 4}{5} = \frac{45 + 4}{5} = \frac{49}{5} \\
3\frac{23}{25} = \frac{(3 \times 25) + 23}{25} = \frac{75 + 23}{25} = \frac{98}{25}
\]Step 2: Divide \(\frac{49}{5}\) by \(\frac{98}{25}\) by multiplying by the reciprocal:
\[
\frac{49}{5} \div \frac{98}{25} = \frac{49}{5} \times \frac{25}{98}
\]Step 3: Multiply numerators and denominators:
\[
= \frac{49 \times 25}{5 \times 98} = \frac{1225}{490}
\]Step 4: Simplify the fraction:
Divide numerator and denominator by 35:
\[
\frac{1225 \div 35}{490 \div 35} = \frac{35}{14}
\]Simplify further by dividing numerator and denominator by 7:
\[
\frac{35 \div 7}{14 \div 7} = \frac{5}{2}
\]Step 5: Convert improper fraction back to mixed number:
\[
\frac{5}{2} = 2\frac{1}{2}
\]Answer: \(2\frac{1}{2}\)
Q24: Divide: \(2\frac{17}{38} \div 1\frac{12}{19}\)
Step 1: Convert the mixed numbers into improper fractions.
\[
2\frac{17}{38} = \frac{(2 \times 38) + 17}{38} = \frac{76 + 17}{38} = \frac{93}{38} \\
1\frac{12}{19} = \frac{(1 \times 19) + 12}{19} = \frac{19 + 12}{19} = \frac{31}{19}
\]Step 2: Divide \(\frac{93}{38}\) by \(\frac{31}{19}\) by multiplying by the reciprocal:
\[
\frac{93}{38} \div \frac{31}{19} = \frac{93}{38} \times \frac{19}{31}
\]Step 3: Multiply numerators and denominators:
\[
= \frac{93 \times 19}{38 \times 31} = \frac{1767}{1178}
\]Step 4: Simplify the fraction if possible:
Check GCD of 1767 and 1178.
Since no common factors other than 1, fraction is in simplest form.
Step 5: Convert the improper fraction to a mixed number:
Divide 1767 by 1178:
\[
1767 \div 1178 = 1 \text{ remainder } 589
\]
So,
\[
\frac{1767}{1178} = 1\frac{589}{1178}
\]Simplify the fractional part:
Divide numerator and denominator by 589:
\[
\frac{589}{1178} = \frac{1}{2}
\]Answer: \(1\frac{1}{2}\)
Q25: Divide: \(8\frac{7}{25} \div 3\frac{1}{15}\)
Step 1: Convert the mixed numbers into improper fractions.
\[
8\frac{7}{25} = \frac{(8 \times 25) + 7}{25} = \frac{200 + 7}{25} = \frac{207}{25} \\
3\frac{1}{15} = \frac{(3 \times 15) + 1}{15} = \frac{45 + 1}{15} = \frac{46}{15}
\]Step 2: Divide \(\frac{207}{25}\) by \(\frac{46}{15}\) by multiplying by the reciprocal:
\[
\frac{207}{25} \div \frac{46}{15} = \frac{207}{25} \times \frac{15}{46}
\]Step 3: Simplify before multiplying:
\[
\frac{207}{25} \times \frac{15}{46} = \frac{207 \times 15}{25 \times 46}
\]
Check for common factors:
– \(15\) and \(25\) share factor \(5\):
\[
15 = 3 \times 5, \quad 25 = 5 \times 5
\]
Cancel one 5:
\[
\frac{207 \times 3}{5 \times 46}
\]– \(207\) and \(46\) share factor \(23\) since:
\[
207 = 9 \times 23, \quad 46 = 2 \times 23
\]
Cancel 23:
\[
\frac{9 \times 3}{5 \times 2} = \frac{27}{10}
\]Step 4: Convert the improper fraction \(\frac{27}{10}\) into a mixed number:
\[
27 \div 10 = 2 \text{ remainder } 7
\]
So,
\[
\frac{27}{10} = 2\frac{7}{10}
\]Answer: \(2\frac{7}{10}\)
Q26: The cost of 1 litre of milk is ₹\(42\frac{3}{5}\), Find the cost of \(12\frac{1}{2}\) litres of milk.
Step 1: Convert the mixed numbers into improper fractions.
Cost of 1 litre milk = ₹\(42\frac{3}{5}\) = ₹\(\frac{(42 \times 5) + 3}{5} = \frac{210 + 3}{5} = \frac{213}{5}\)
Quantity = \(12\frac{1}{2} = \frac{(12 \times 2) + 1}{2} = \frac{24 + 1}{2} = \frac{25}{2}\) litresStep 2: Multiply cost per litre by the quantity:
\[
\text{Total cost} = \frac{213}{5} \times \frac{25}{2} = \frac{213 \times 25}{5 \times 2}
\]Step 3: Simplify the fraction:
\[
\frac{213 \times 25}{5 \times 2} = \frac{213 \times 5 \times 5}{5 \times 2}
\]
Cancel \(5\) from numerator and denominator:
\[
= \frac{213 \times 5}{2} = \frac{1065}{2}
\]Step 4: Convert the improper fraction to mixed number:
\[
1065 \div 2 = 532 \text{ remainder } 1
\]
So,
\[
\frac{1065}{2} = 532\frac{1}{2}
\]Answer: ₹\(532\frac{1}{2}\) or ₹532.50
Q27: The cost of 1 litre of petrol is ₹\(65\frac{3}{4}\). Find the cost of 36 litres of petrol.
Step 1: Convert the mixed number into an improper fraction.
Cost of 1 litre petrol =
\[
\text{₹ } 65\frac{3}{4} = \text{₹ } \frac{(65 \times 4) + 3}{4} = \frac{260 + 3}{4} = \frac{263}{4}
\]Step 2: Multiply the cost per litre by the number of litres:
\[
\text{Total cost} = \frac{263}{4} \times 36 = \frac{263 \times 36}{4}
\]Step 3: Simplify the fraction:
Divide numerator and denominator by 4:
\[
= \frac{263 \times 9}{1} = 263 \times 9 = 2367
\]Answer: ₹2367
Q28: The cost of \(3\frac{1}{2}\) metres of cloth is ₹\(547\frac{3}{4}\). Find the cost of 1 metre of cloth.
Step 1: Convert mixed numbers into improper fractions.
Length of cloth =
\[
3\frac{1}{2} = \frac{(3 \times 2) + 1}{2} = \frac{7}{2} \text{ metres}
\]
Cost of \(3\frac{1}{2}\) metres = ₹\(547\frac{3}{4} = \frac{(547 \times 4) + 3}{4} = \frac{2188 + 3}{4} = \frac{2191}{4}\)
Step 2: Cost of 1 metre = \(\frac{\text{Total cost}}{\text{Length}}\)
\[
= \frac{\frac{2191}{4}}{\frac{7}{2}} = \frac{2191}{4} \times \frac{2}{7} = \frac{2191 \times 2}{4 \times 7} = \frac{4382}{28}
\]Step 3: Simplify the fraction:
Divide numerator and denominator by 2:
\[
= \frac{2191}{14}
\]Step 4: Convert improper fraction into mixed number:
Divide 2191 by 14: \(2191 \div 14 = 156\) remainder \(7\)
So,
\[
\frac{2191}{14} = 156 \frac{7}{14} = 156 \frac{1}{2}
\]Answer: ₹156\frac{1}{2}
Q29: Tanvy cuts 54 m of Cloth into pieces, each of length \(3\frac{3}{8}\) m. How many pieces does she get?
Step 1: Convert the mixed fraction into an improper fraction.
Length of each piece = \(3\frac{3}{8} = \frac{(3 \times 8) + 3}{8} = \frac{24 + 3}{8} = \frac{27}{8}\) metres
Step 2: Total length of cloth = 54 metres (whole number can be written as fraction with denominator 1):
\[
54 = \frac{54}{1}
\]Step 3: Number of pieces = \(\frac{\text{Total length}}{\text{Length of each piece}} = \frac{54}{1} \div \frac{27}{8} = \frac{54}{1} \times \frac{8}{27}\)
\[
= \frac{54 \times 8}{1 \times 27} = \frac{432}{27}
\]Step 4: Simplify the fraction:
Divide numerator and denominator by 27:
\[
= \frac{432 \div 27}{27 \div 27} = \frac{16}{1} = 16
\]Answer: 16 pieces
Q30: A cord of length \(126\frac{1}{2}\) m has been cut into 46 pieces of equal length. What is the length of each piece?
Step 1: Convert the mixed fraction into an improper fraction.
Total length of the cord:
\[
126\frac{1}{2} = \frac{(126 \times 2) + 1}{2} = \frac{252 + 1}{2} = \frac{253}{2} \text{ metres}
\]Step 2: Number of pieces = 46
Step 3: Length of each piece = \(\frac{\text{Total length}}{\text{Number of pieces}} = \frac{253}{2} \div 46 = \frac{253}{2} \times \frac{1}{46}\)
\[
= \frac{253 \times 1}{2 \times 46} = \frac{253}{92}//
= \frac{253 \div 23}{92 \div 23} = \frac{11}{4}
\]Step 4: Simplify the fraction if possible.
Convert the improper fraction to a mixed fraction:
\[
\frac{11}{4} = 2\frac{3}{4}
\]Answer: Each piece is \(2\frac{3}{4}\) metres long.
Q31: A car travels \(283\frac{1}{2}\) km in \(4\frac{2}{3}\) hours. How far does it go in 1 hour?
Step 1: Convert mixed fractions to improper fractions.
Distance travelled = \(283\frac{1}{2}\) km = \(\frac{(283 \times 2) + 1}{2} = \frac{566 + 1}{2} = \frac{567}{2}\) km
Time taken = \(4\frac{2}{3}\) hours = \(\frac{(4 \times 3) + 2}{3} = \frac{12 + 2}{3} = \frac{14}{3}\) hours
Step 2: Distance travelled in 1 hour = \(\frac{\text{Total distance}}{\text{Total time}} = \frac{567}{2} \div \frac{14}{3}\)
\[
= \frac{567}{2} \times \frac{3}{14} = \frac{567 \times 3}{2 \times 14} = \frac{1701}{28}
\]Step 3: Simplify \(\frac{1701}{28}\)
Since 1701 and 28 have no common factors other than 1, convert to mixed fraction:
\[
1701 \div 28 = 60 \text{ remainder } 21
\]
So,
\[
\frac{1701}{28} = 60\frac{21}{28}
\]Step 4: Simplify the fraction \(\frac{21}{28}\) by dividing numerator and denominator by 7:
\[
\frac{21}{28} = \frac{3}{4}
\]Answer: The car travels \(60\frac{3}{4}\) km in 1 hour.
Q32: The area of a rectangular plot of land is \(46\frac{2}{5}\) sq.m. If its length is \(7\frac{1}{4}\) m, find itd breadth.
Step 1: Convert mixed fractions to improper fractions.
Area \(= 46\frac{2}{5} = \frac{(46 \times 5) + 2}{5} = \frac{230 + 2}{5} = \frac{232}{5}\) sq.m.
Length \(= 7\frac{1}{4} = \frac{(7 \times 4) + 1}{4} = \frac{28 + 1}{4} = \frac{29}{4}\) m
Step 2: Using the formula:
\[
\text{Breadth} = \frac{\text{Area}}{\text{Length}} = \frac{\frac{232}{5}}{\frac{29}{4}} = \frac{232}{5} \times \frac{4}{29} = \frac{232 \times 4}{5 \times 29} = \frac{928}{145}
\]Step 3: Simplify the fraction \(\frac{928}{145}\) to a mixed fraction:
Divide 928 by 145:
\[
928 \div 145 = 6 \text{ remainder } 58
\]
So,
\[
\frac{928}{145} = 6\frac{58}{145}
\]Step 4: Check if \(\frac{58}{145}\) can be simplified.
Factors of 58: 1, 2, 29, 58
Factors of 145: 1, 5, 29, 145
Common factor = 29
Divide numerator and denominator by 29:
\[
\frac{58}{145} = \frac{2}{5}
\]Answer: The breadth of the rectangular plot is \(6\frac{2}{5}\) meters.
Q33: The product of two fractions is \(15\frac{3}{4}\). If one of them is \(4\frac{1}{2}\), find the other.
Step 1: Convert mixed fractions into improper fractions.
Product \(= 15\frac{3}{4} = \frac{(15 \times 4) + 3}{4} = \frac{60 + 3}{4} = \frac{63}{4}\)
One fraction \(= 4\frac{1}{2} = \frac{(4 \times 2) + 1}{2} = \frac{8 + 1}{2} = \frac{9}{2}\)
Step 2: Use the product formula:
\[
\text{Product} = \text{First fraction} \times \text{Second fraction} \\
\Rightarrow \frac{63}{4} = \frac{9}{2} \times x
\]Step 3: Solve for \(x\):
\[
x = \frac{63}{4} \div \frac{9}{2} = \frac{63}{4} \times \frac{2}{9} = \frac{63 \times 2}{4 \times 9} = \frac{126}{36} = \frac{7}{2}
\]Step 4: Convert \(\frac{7}{2}\) into a mixed fraction:
\[
7 \div 2 = 3 \text{ remainder } 1 \Rightarrow \frac{7}{2} = 3\frac{1}{2}
\]Answer: The other fraction is \(3\frac{1}{2}\).