Fractions

Fractions

Step by Step solutions of RS Aggarwal ICSE Class-6 Maths chapter 4- Fractions by Goyal Brothers Prakashan is provided.

Table of Contents

Exercise: 4-E

Q1: Find the product: \(\frac{5}{7} \times \frac{2}{3}\)

Step 1: Write the multiplication: \[ \frac{5}{7} \times \frac{2}{3} \]Step 2: Multiply numerators and denominators: \[ \text{Numerator} = 5 \times 2 = 10 \\ \text{Denominator} = 7 \times 3 = 21 \]So, \[ \frac{5}{7} \times \frac{2}{3} = \frac{10}{21} \]Answer: \(\frac{10}{21}\)


Q2: Find the product: \(\frac{3}{5} \times \frac{4}{9}\)

Step 1: Write the multiplication: \[ \frac{3}{5} \times \frac{4}{9} \]Step 2: Simplify by cancelling any common factors between numerators and denominators.
– Numerator 3 and denominator 9 have a common factor 3: \[ 3 \div 3 = 1, \quad 9 \div 3 = 3 \]No other common factors.
So, multiplication becomes: \[ \frac{1}{5} \times \frac{4}{3} \]Step 3: Multiply numerators and denominators: \[ \frac{1 \times 4}{5 \times 3} = \frac{4}{15} \]Answer: \(\frac{4}{15}\)


Q3: Find the product: \(\frac{12}{35} \times \frac{14}{27}\)

Step 1: Write the multiplication: \[ \frac{12}{35} \times \frac{14}{27} \]Step 2: Simplify by cancelling common factors between numerators and denominators before multiplying.
– Numerator 12 and denominator 27: \[ 12 = 2^2 \times 3, \quad 27 = 3^3 \]Common factor: 3 \[ 12 \div 3 = 4, \quad 27 \div 3 = 9 \]– Numerator 14 and denominator 35: \[ 14 = 2 \times 7, \quad 35 = 5 \times 7 \]Common factor: 7 \[ 14 \div 7 = 2, \quad 35 \div 7 = 5 \]After simplification, multiplication becomes: \[ \frac{4}{5} \times \frac{2}{9} \]Step 3: Multiply numerators and denominators: \[ \frac{4 \times 2}{5 \times 9} = \frac{8}{45} \]Answer: \(\frac{8}{45}\)


Q4: Find the product: \(\frac{30}{51} \times \frac{17}{25}\)

Step 1: Write the multiplication of fractions. \[ \frac{30}{51} \times \frac{17}{25} \]Step 2: Simplify by dividing numerator and denominator with common factors before multiplying.
– Numerator of first fraction = 30
– Denominator of second fraction = 25
Common factors: 5 \[ 30 \div 5 = 6, \quad 25 \div 5 = 5 \]– Numerator of second fraction = 17
– Denominator of first fraction = 51
Check common factors between 17 and 51.
17 is a prime number and 51 = 3 × 17
So, \[ 17 \div 17 = 1, \quad 51 \div 17 = 3 \]After simplification, fractions become: \[ \frac{6}{3} \times \frac{1}{5} \]Step 3: Simplify \(\frac{6}{3}\) \[ \frac{6}{3} = 2 \]So multiplication becomes: \[ 2 \times \frac{1}{5} = \frac{2}{5} \]Answer: \(\frac{2}{5}\)


Q5: Find the product: \(\frac{9}{16} \times \frac{14}{15}\)

Step 1: Write the multiplication: \[ \frac{9}{16} \times \frac{14}{15} \]Step 2: Simplify before multiplying to make calculation easier:
– Numerator 9 and denominator 15 share a common factor 3: \[ 9 \div 3 = 3, \quad 15 \div 3 = 5 \]– Numerator 14 and denominator 16 share a common factor 2: \[ 14 \div 2 = 7, \quad 16 \div 2 = 8 \]Now the multiplication becomes: \[ \frac{3}{8} \times \frac{7}{5} \]Step 3: Multiply numerators and denominators: \[ \text{Numerator} = 3 \times 7 = 21 \\ \text{Denominator} = 8 \times 5 = 40 \]So, \[ \frac{9}{16} \times \frac{14}{15} = \frac{21}{40} \]Answer: \(\frac{21}{40}\)


Q6: Find the product: \(2\frac{11}{27} \times 18\)

Step 1: Convert the mixed fraction \(2\frac{11}{27}\) to an improper fraction: \[ 2\frac{11}{27} = \frac{2 \times 27 + 11}{27} = \frac{54 + 11}{27} = \frac{65}{27} \]Step 2: Write the multiplication as: \[ \frac{65}{27} \times 18 \]Step 3: Express 18 as a fraction: \[ 18 = \frac{18}{1} \]So, \[ \frac{65}{27} \times \frac{18}{1} \]Step 4: Simplify before multiplying:
– Numerator 18 and denominator 27 share a common factor 9: \[ 18 \div 9 = 2, \quad 27 \div 9 = 3 \]Now the multiplication becomes: \[ \frac{65}{3} \times \frac{2}{1} \]Step 5: Multiply numerators and denominators: \[ \text{Numerator} = 65 \times 2 = 130 \\ \text{Denominator} = 3 \times 1 = 3 \]So, \[ 2\frac{11}{27} \times 18 = \frac{130}{3} \]Step 6: Convert the improper fraction \(\frac{130}{3}\) back to a mixed number: \[ 130 \div 3 = 43 \text{ remainder } 1 \]Thus, \[ \frac{130}{3} = 43 \frac{1}{3} \]Answer: \(43 \frac{1}{3}\)


Q7: Find the product: \(7\frac{1}{12} \times \frac{8}{17}\)

Step 1: Convert the mixed fraction \(7\frac{1}{12}\) to an improper fraction: \[ 7\frac{1}{12} = \frac{7 \times 12 + 1}{12} = \frac{84 + 1}{12} = \frac{85}{12} \]Step 2: Write the multiplication as: \[ \frac{85}{12} \times \frac{8}{17} \]Step 3: Simplify before multiplying:
– Numerator 85 and denominator 17 share a common factor 17: \[ 85 \div 17 = 5, \quad 17 \div 17 = 1 \]– Numerator 8 and denominator 12 share a common factor 4: \[ 8 \div 4 = 2, \quad 12 \div 4 = 3 \]Now the multiplication becomes: \[ \frac{5}{3} \times \frac{2}{1} \]Step 4: Multiply numerators and denominators: \[ \text{Numerator} = 5 \times 2 = 10 \\ \text{Denominator} = 3 \times 1 = 3 \]So, \[ 7\frac{1}{12} \times \frac{8}{17} = \frac{10}{3} \]Step 5: Convert the improper fraction \(\frac{10}{3}\) back to a mixed number: \[ 10 \div 3 = 3 \text{ remainder } 1 \]Thus, \[ \frac{10}{3} = 3 \frac{1}{3} \]Answer: \(3 \frac{1}{3}\)


Q8: Find the product: \(8\frac{1}{21} \times 1\frac{1}{13}\)

Step 1: Convert the mixed fractions to improper fractions: \[ 8\frac{1}{21} = \frac{8 \times 21 + 1}{21} = \frac{168 + 1}{21} = \frac{169}{21} \\ 1\frac{1}{13} = \frac{1 \times 13 + 1}{13} = \frac{13 + 1}{13} = \frac{14}{13} \]Step 2: Write the multiplication: \[ \frac{169}{21} \times \frac{14}{13} \]Step 3: Simplify before multiplying:
– Numerator 169 and denominator 13 share a common factor 13: \[ 169 \div 13 = 13, \quad 13 \div 13 = 1 \]– Numerator 14 and denominator 21 share a common factor 7: \[ 14 \div 7 = 2, \quad 21 \div 7 = 3 \]Now the multiplication becomes: \[ \frac{13}{3} \times \frac{2}{1} \]Step 4: Multiply numerators and denominators: \[ \text{Numerator} = 13 \times 2 = 26 \\ \text{Denominator} = 3 \times 1 = 3 \]So, \[ 8\frac{1}{21} \times 1\frac{1}{13} = \frac{26}{3} \]Step 5: Convert the improper fraction \(\frac{26}{3}\) to a mixed number: \[ 26 \div 3 = 8 \text{ remainder } 2 \]Thus, \[ \frac{26}{3} = 8 \frac{2}{3} \]Answer: \(8 \frac{2}{3}\)


Q9: Find the product: \(7\frac{7}{11} \times 6\frac{3}{16}\)

Step 1: Convert the mixed fractions to improper fractions: \[ 7\frac{7}{11} = \frac{7 \times 11 + 7}{11} = \frac{77 + 7}{11} = \frac{84}{11} \\ 6\frac{3}{16} = \frac{6 \times 16 + 3}{16} = \frac{96 + 3}{16} = \frac{99}{16} \]Step 2: Write the multiplication: \[ \frac{84}{11} \times \frac{99}{16} \]Step 3: Simplify before multiplying:
– Numerator 84 and denominator 16 share a common factor 4: \[ 84 \div 4 = 21, \quad 16 \div 4 = 4 \]– Numerator 99 and denominator 11 share a common factor 11: \[ 99 \div 11 = 9, \quad 11 \div 11 = 1 \]Now the multiplication becomes: \[ \frac{21}{1} \times \frac{9}{4} \]Step 4: Multiply numerators and denominators: \[ \text{Numerator} = 21 \times 9 = 189 \\ \text{Denominator} = 1 \times 4 = 4 \]So, \[ 7\frac{7}{11} \times 6\frac{3}{16} = \frac{189}{4} \]Step 5: Convert the improper fraction \(\frac{189}{4}\) to a mixed number: \[ 189 \div 4 = 47 \text{ remainder } 1 \]Thus, \[ \frac{189}{4} = 47 \frac{1}{4} \]Answer: \(47 \frac{1}{4}\)


Q10: Find the product: \(11\frac{1}{4} \times 6\frac{7}{9}\)

Step 1: Convert mixed fractions to improper fractions: \[ 11\frac{1}{4} = \frac{11 \times 4 + 1}{4} = \frac{44 + 1}{4} = \frac{45}{4} \\ 6\frac{7}{9} = \frac{6 \times 9 + 7}{9} = \frac{54 + 7}{9} = \frac{61}{9} \]Step 2: Multiply the improper fractions: \[ \frac{45}{4} \times \frac{61}{9} \]Step 3: Simplify before multiplication:
– 45 and 9 share a common factor 9: \[ 45 \div 9 = 5, \quad 9 \div 9 = 1 \]– No other common factors between numerator and denominator.
So multiplication becomes: \[ \frac{5}{4} \times \frac{61}{1} = \frac{5 \times 61}{4 \times 1} = \frac{305}{4} \]Step 4: Convert \(\frac{305}{4}\) to a mixed number: \[ 305 \div 4 = 76 \text{ remainder } 1 \]So, \[ \frac{305}{4} = 76 \frac{1}{4} \]Answer: \(76 \frac{1}{4}\)


Q11: Find the product: \(1\frac{3}{4} \times 2\frac{1}{7} \times 4\frac{4}{5}\)

Step 1: Convert mixed fractions to improper fractions: \[ 1\frac{3}{4} = \frac{1 \times 4 + 3}{4} = \frac{7}{4} \\ 2\frac{1}{7} = \frac{2 \times 7 + 1}{7} = \frac{15}{7} \\ 4\frac{4}{5} = \frac{4 \times 5 + 4}{5} = \frac{24}{5} \]Step 2: Multiply the three improper fractions: \[ \frac{7}{4} \times \frac{15}{7} \times \frac{24}{5} \]Step 3: Simplify before multiplication:
– Cancel \(7\) in numerator and denominator: \[ \frac{7}{4} \times \frac{15}{7} \times \frac{24}{5} \]– Cancel 15 and 5 (since \(15 = 3 \times 5\)): \[ \frac{1}{4} \times \frac{3 \times \ 5}{1} \times \frac{24}{5} = \frac{1}{4} \times 3 \times 24 \]– Cancel 24 and 4 (since \(24 = 6 \times 4\)): \[ \frac{1}{4} \times 3 \times \frac{6 \times \ 4}{1} = 1 \times 3 \times 6 = 18 \]Answer: 18


Q12: Find the product: \(3\frac{1}{6} \times 2\frac{3}{4} \times 2\frac{4}{11}\)

Step 1: Convert mixed fractions to improper fractions: \[ 3\frac{1}{6} = \frac{3 \times 6 + 1}{6} = \frac{19}{6} \\ 2\frac{3}{4} = \frac{2 \times 4 + 3}{4} = \frac{11}{4} \\ 2\frac{4}{11} = \frac{2 \times 11 + 4}{11} = \frac{26}{11} \]Step 2: Multiply the three improper fractions: \[ \frac{19}{6} \times \frac{11}{4} \times \frac{26}{11} \]Step 3: Simplify before multiplication:
– Cancel 11 in numerator and denominator: \[ \frac{19}{6} \times \frac{11}{4} \times \frac{26}{11} = \frac{19}{6} \times \frac{1}{4} \times 26 \]Step 4: Multiply the numerators and denominators: \[ \frac{19 \times 1 \times 26}{6 \times 4 \times 1} = \frac{494}{24} \]Step 5: Simplify the fraction \(\frac{494}{24}\):– Find the GCD of 494 and 24, which is 2. \[ \frac{494 \div 2}{24 \div 2} = \frac{247}{12} \]Step 6: Convert \(\frac{247}{12}\) to a mixed fraction: \[ 247 \div 12 = 20 \text{ remainder } 7 \]So, \[ \frac{247}{12} = 20\frac{7}{12} \]Answer: \(20\frac{7}{12}\)


Q13: Find the reciprocal of:

i. \(\frac{5}{9}\)

Step 1: Recall the reciprocal of a fraction \(\frac{a}{b}\) is \(\frac{b}{a}\).
Here, reciprocal of \(\frac{5}{9}\) is \(\frac{9}{5}\).
Answer: \(\frac{9}{5}\)

ii. \(\frac{7}{13}\)

Step 1: Reciprocal of \(\frac{7}{13}\) is \(\frac{13}{7}\).
Answer: \(\frac{13}{7}\)

iii. \(8\) (Whole number)

Step 1: Whole number \(8\) can be written as \(\frac{8}{1}\).
Step 2: Reciprocal of \(\frac{8}{1}\) is \(\frac{1}{8}\).
Answer: \(\frac{1}{8}\)

iv. \(\frac{1}{5}\)

Step 1: Reciprocal of \(\frac{1}{5}\) is \(\frac{5}{1} = 5\).
Answer: 5

v. \(3\frac{2}{5}\) (Mixed fraction)

Step 1: Convert mixed fraction to improper fraction: \[ 3\frac{2}{5} = \frac{3 \times 5 + 2}{5} = \frac{15 + 2}{5} = \frac{17}{5} \] Step 2: Reciprocal of \(\frac{17}{5}\) is \(\frac{5}{17}\).
Answer: \(\frac{5}{17}\)

vi. \(8\frac{1}{9}\) (Mixed fraction)

Step 1: Convert mixed fraction to improper fraction: \[ 8\frac{1}{9} = \frac{8 \times 9 + 1}{9} = \frac{72 + 1}{9} = \frac{73}{9} \] Step 2: Reciprocal of \(\frac{73}{9}\) is \(\frac{9}{73}\).
Answer: \(\frac{9}{73}\)

vii. \(5\frac{3}{8}\) (Mixed fraction)

Step 1: Convert mixed fraction to improper fraction: \[ 5\frac{3}{8} = \frac{5 \times 8 + 3}{8} = \frac{40 + 3}{8} = \frac{43}{8} \] Step 2: Reciprocal of \(\frac{43}{8}\) is \(\frac{8}{43}\).
Answer: \(\frac{8}{43}\)

viii. \(23\) (Whole number)

Step 1: Write \(23\) as \(\frac{23}{1}\).
Step 2: Reciprocal of \(\frac{23}{1}\) is \(\frac{1}{23}\).
Answer: \(\frac{1}{23}\)


Q14: Divide: \(\frac{13}{21} \div \frac{2}{7}\)

Step 1: Recall the rule: To divide two fractions, multiply the first fraction by the reciprocal of the second. \[ \frac{13}{21} \div \frac{2}{7} = \frac{13}{21} \times \frac{7}{2} \]Step 2: Multiply the numerators and the denominators: \[ = \frac{13 \times 7}{21 \times 2} = \frac{91}{42} \]Step 3: Simplify the fraction by dividing both numerator and denominator by the common factor 7: \[ \frac{91 \div 7}{42 \div 7} = \frac{13}{6} \]Answer: \(\frac{13}{6}\) or \(2\frac{1}{6}\)


Q15: Divide: \(3\frac{1}{8} \div 5\)

Step 1: Convert the mixed number \(3\frac{1}{8}\) into an improper fraction. \[ 3\frac{1}{8} = \frac{(3 \times 8 + 1)}{8} = \frac{25}{8} \]Step 2: Divide \(\frac{25}{8}\) by 5. Dividing by 5 is the same as multiplying by \(\frac{1}{5}\): \[ \frac{25}{8} \div 5 = \frac{25}{8} \times \frac{1}{5} \]Step 3: Multiply the numerators and the denominators: \[ = \frac{25 \times 1}{8 \times 5} = \frac{25}{40} \]Step 4: Simplify the fraction \(\frac{25}{40}\) by dividing numerator and denominator by 5: \[ \frac{25 \div 5}{40 \div 5} = \frac{5}{8} \]Answer: \(\frac{5}{8}\)


Q16: Divide: \(1 \div 2\frac{3}{5}\)

Step 1: Convert the mixed number \(2\frac{3}{5}\) into an improper fraction. \[ 2\frac{3}{5} = \frac{(2 \times 5 + 3)}{5} = \frac{13}{5} \]Step 2: Now divide 1 by \(\frac{13}{5}\). Dividing by a fraction is the same as multiplying by its reciprocal: \[ 1 \div \frac{13}{5} = 1 \times \frac{5}{13} \]Step 3: Multiply the numerators and the denominators: \[ = \frac{1 \times 5}{1 \times 13} = \frac{5}{13} \]Answer: \(\frac{5}{13}\)


Q17: Divide: \(7\frac{5}{9} \div 34\)

Step 1: Convert the mixed number \(7\frac{5}{9}\) into an improper fraction. \[ 7\frac{5}{9} = \frac{(7 \times 9 + 5)}{9} = \frac{63 + 5}{9} = \frac{68}{9} \]Step 2: Express 34 as a fraction: \[ 34 = \frac{34}{1} \]Step 3: Divide \(\frac{68}{9}\) by \(\frac{34}{1}\) by multiplying \(\frac{68}{9}\) by the reciprocal of \(\frac{34}{1}\): \[ \frac{68}{9} \div \frac{34}{1} = \frac{68}{9} \times \frac{1}{34} \]Step 4: Simplify before multiplying: \[ \frac{68}{9} \times \frac{1}{34} = \frac{68 \div 34}{9 \times 1} = \frac{2}{9} \]Answer: \(\frac{2}{9}\)


Q18: Divide: \(70 \div 8\frac{2}{5}\)

i. Division of a whole number by a mixed number

Step 1: Convert the mixed number \(8\frac{2}{5}\) into an improper fraction. \[ 8\frac{2}{5} = \frac{(8 \times 5 + 2)}{5} = \frac{40 + 2}{5} = \frac{42}{5} \]Step 2: Express 70 as a fraction: \[ 70 = \frac{70}{1} \]Step 3: Divide \(\frac{70}{1}\) by \(\frac{42}{5}\) by multiplying \(\frac{70}{1}\) by the reciprocal of \(\frac{42}{5}\): \[ \frac{70}{1} \div \frac{42}{5} = \frac{70}{1} \times \frac{5}{42} \]Step 4: Simplify before multiplying: \[ = \frac{70 \times 5}{1 \times 42} = \frac{350}{42} \]Simplify numerator and denominator by 14: \[ \frac{350 \div 14}{42 \div 14} = \frac{25}{3} \]Step 5: Convert the improper fraction \(\frac{25}{3}\) to a mixed number: \[ \frac{25}{3} = 8 \frac{1}{3} \]Answer: \(8 \frac{1}{3}\)


Q19: Divide: \(4\frac{1}{2} \div 6\frac{1}{2}\)

Step 1: Convert both mixed numbers into improper fractions. \[ 4\frac{1}{2} = \frac{(4 \times 2) + 1}{2} = \frac{8 + 1}{2} = \frac{9}{2} \\ 6\frac{1}{2} = \frac{(6 \times 2) + 1}{2} = \frac{12 + 1}{2} = \frac{13}{2} \]Step 2: Divide \(\frac{9}{2}\) by \(\frac{13}{2}\) by multiplying \(\frac{9}{2}\) by the reciprocal of \(\frac{13}{2}\): \[ \frac{9}{2} \div \frac{13}{2} = \frac{9}{2} \times \frac{2}{13} \]Step 3: Simplify before multiplying: \[ = \frac{9 \times 2}{2 \times 13} = \frac{18}{26} \]Simplify numerator and denominator by 2: \[ \frac{18 \div 2}{26 \div 2} = \frac{9}{13} \]Answer: \(\frac{9}{13}\)


Q20: Divide: \(5\frac{7}{10} \div 3\frac{1}{6}\)

Step 1: Convert both mixed numbers into improper fractions. \[ 5\frac{7}{10} = \frac{(5 \times 10) + 7}{10} = \frac{50 + 7}{10} = \frac{57}{10} \\ 3\frac{1}{6} = \frac{(3 \times 6) + 1}{6} = \frac{18 + 1}{6} = \frac{19}{6} \]Step 2: Divide \(\frac{57}{10}\) by \(\frac{19}{6}\) by multiplying \(\frac{57}{10}\) by the reciprocal of \(\frac{19}{6}\): \[ \frac{57}{10} \div \frac{19}{6} = \frac{57}{10} \times \frac{6}{19} \]Step 3: Multiply the numerators and denominators: \[ = \frac{57 \times 6}{10 \times 19} = \frac{342}{190} \]Step 4: Simplify the fraction \(\frac{342}{190}\):
Divide numerator and denominator by 2: \[ \frac{342 \div 38}{190 \div 38} = \frac{9}{5} \]Step 5: Convert the improper fraction to a mixed number: \[ \frac{9}{5} = 1\frac{4}{5} \]Answer: \(1\frac{4}{5}\)


Q21: Divide: \(10\frac{5}{7} \div 1\frac{11}{14}\)

Step 1: Convert the mixed numbers into improper fractions. \[ 10\frac{5}{7} = \frac{(10 \times 7) + 5}{7} = \frac{70 + 5}{7} = \frac{75}{7} \\ 1\frac{11}{14} = \frac{(1 \times 14) + 11}{14} = \frac{14 + 11}{14} = \frac{25}{14} \]Step 2: Divide \(\frac{75}{7}\) by \(\frac{25}{14}\) by multiplying by the reciprocal: \[ \frac{75}{7} \div \frac{25}{14} = \frac{75}{7} \times \frac{14}{25} \]Step 3: Multiply numerators and denominators: \[ = \frac{75 \times 14}{7 \times 25} = \frac{1050}{175} \]Step 4: Simplify the fraction:
Divide numerator and denominator by 25: \[ \frac{1050 \div 25}{175 \div 25} = \frac{42}{7} \]Divide numerator and denominator by 7: \[ \frac{42 \div 7}{7 \div 7} = \frac{6}{1} = 6 \]Answer: 6


Q22: Divide: \(15\frac{8}{9} \div 3\frac{2}{3}\)

Step 1: Convert the mixed numbers into improper fractions. \[ 15\frac{8}{9} = \frac{(15 \times 9) + 8}{9} = \frac{135 + 8}{9} = \frac{143}{9} \\ 3\frac{2}{3} = \frac{(3 \times 3) + 2}{3} = \frac{9 + 2}{3} = \frac{11}{3} \]Step 2: Divide \(\frac{143}{9}\) by \(\frac{11}{3}\) by multiplying by the reciprocal: \[ \frac{143}{9} \div \frac{11}{3} = \frac{143}{9} \times \frac{3}{11} \]Step 3: Multiply numerators and denominators: \[ = \frac{143 \times 3}{9 \times 11} = \frac{429}{99} \]Step 4: Simplify the fraction:
Divide numerator and denominator by 11: \[ \frac{429 \div 11}{99 \div 11} = \frac{39}{9} \]Simplify further by dividing numerator and denominator by 3: \[ \frac{39 \div 3}{9 \div 3} = \frac{13}{3} \]Step 5: Convert improper fraction back to mixed number: \[ \frac{13}{3} = 4\frac{1}{3} \]Answer: \(4\frac{1}{3}\)


Q23: Divide: \(9\frac{4}{5} \div 3\frac{23}{25}\)

i. Division of two mixed numbers

Step 1: Convert the mixed numbers into improper fractions. \[ 9\frac{4}{5} = \frac{(9 \times 5) + 4}{5} = \frac{45 + 4}{5} = \frac{49}{5} \\ 3\frac{23}{25} = \frac{(3 \times 25) + 23}{25} = \frac{75 + 23}{25} = \frac{98}{25} \]Step 2: Divide \(\frac{49}{5}\) by \(\frac{98}{25}\) by multiplying by the reciprocal: \[ \frac{49}{5} \div \frac{98}{25} = \frac{49}{5} \times \frac{25}{98} \]Step 3: Multiply numerators and denominators: \[ = \frac{49 \times 25}{5 \times 98} = \frac{1225}{490} \]Step 4: Simplify the fraction:
Divide numerator and denominator by 35: \[ \frac{1225 \div 35}{490 \div 35} = \frac{35}{14} \]Simplify further by dividing numerator and denominator by 7: \[ \frac{35 \div 7}{14 \div 7} = \frac{5}{2} \]Step 5: Convert improper fraction back to mixed number: \[ \frac{5}{2} = 2\frac{1}{2} \]Answer: \(2\frac{1}{2}\)


Q24: Divide: \(2\frac{17}{38} \div 1\frac{12}{19}\)

Step 1: Convert the mixed numbers into improper fractions. \[ 2\frac{17}{38} = \frac{(2 \times 38) + 17}{38} = \frac{76 + 17}{38} = \frac{93}{38} \\ 1\frac{12}{19} = \frac{(1 \times 19) + 12}{19} = \frac{19 + 12}{19} = \frac{31}{19} \]Step 2: Divide \(\frac{93}{38}\) by \(\frac{31}{19}\) by multiplying by the reciprocal: \[ \frac{93}{38} \div \frac{31}{19} = \frac{93}{38} \times \frac{19}{31} \]Step 3: Multiply numerators and denominators: \[ = \frac{93 \times 19}{38 \times 31} = \frac{1767}{1178} \]Step 4: Simplify the fraction if possible:
Check GCD of 1767 and 1178.
Since no common factors other than 1, fraction is in simplest form.
Step 5: Convert the improper fraction to a mixed number:
Divide 1767 by 1178: \[ 1767 \div 1178 = 1 \text{ remainder } 589 \] So, \[ \frac{1767}{1178} = 1\frac{589}{1178} \]Simplify the fractional part:
Divide numerator and denominator by 589: \[ \frac{589}{1178} = \frac{1}{2} \]Answer: \(1\frac{1}{2}\)


Q25: Divide: \(8\frac{7}{25} \div 3\frac{1}{15}\)

Step 1: Convert the mixed numbers into improper fractions. \[ 8\frac{7}{25} = \frac{(8 \times 25) + 7}{25} = \frac{200 + 7}{25} = \frac{207}{25} \\ 3\frac{1}{15} = \frac{(3 \times 15) + 1}{15} = \frac{45 + 1}{15} = \frac{46}{15} \]Step 2: Divide \(\frac{207}{25}\) by \(\frac{46}{15}\) by multiplying by the reciprocal: \[ \frac{207}{25} \div \frac{46}{15} = \frac{207}{25} \times \frac{15}{46} \]Step 3: Simplify before multiplying: \[ \frac{207}{25} \times \frac{15}{46} = \frac{207 \times 15}{25 \times 46} \] Check for common factors:
– \(15\) and \(25\) share factor \(5\): \[ 15 = 3 \times 5, \quad 25 = 5 \times 5 \] Cancel one 5: \[ \frac{207 \times 3}{5 \times 46} \]– \(207\) and \(46\) share factor \(23\) since: \[ 207 = 9 \times 23, \quad 46 = 2 \times 23 \] Cancel 23: \[ \frac{9 \times 3}{5 \times 2} = \frac{27}{10} \]Step 4: Convert the improper fraction \(\frac{27}{10}\) into a mixed number: \[ 27 \div 10 = 2 \text{ remainder } 7 \] So, \[ \frac{27}{10} = 2\frac{7}{10} \]Answer: \(2\frac{7}{10}\)


Q26: The cost of 1 litre of milk is ₹\(42\frac{3}{5}\), Find the cost of \(12\frac{1}{2}\) litres of milk.

Step 1: Convert the mixed numbers into improper fractions.
Cost of 1 litre milk = ₹\(42\frac{3}{5}\) = ₹\(\frac{(42 \times 5) + 3}{5} = \frac{210 + 3}{5} = \frac{213}{5}\)
Quantity = \(12\frac{1}{2} = \frac{(12 \times 2) + 1}{2} = \frac{24 + 1}{2} = \frac{25}{2}\) litresStep 2: Multiply cost per litre by the quantity: \[ \text{Total cost} = \frac{213}{5} \times \frac{25}{2} = \frac{213 \times 25}{5 \times 2} \]Step 3: Simplify the fraction: \[ \frac{213 \times 25}{5 \times 2} = \frac{213 \times 5 \times 5}{5 \times 2} \] Cancel \(5\) from numerator and denominator: \[ = \frac{213 \times 5}{2} = \frac{1065}{2} \]Step 4: Convert the improper fraction to mixed number: \[ 1065 \div 2 = 532 \text{ remainder } 1 \] So, \[ \frac{1065}{2} = 532\frac{1}{2} \]Answer: ₹\(532\frac{1}{2}\) or ₹532.50


Q27: The cost of 1 litre of petrol is ₹\(65\frac{3}{4}\). Find the cost of 36 litres of petrol.

Step 1: Convert the mixed number into an improper fraction.
Cost of 1 litre petrol = \[ \text{₹ } 65\frac{3}{4} = \text{₹ } \frac{(65 \times 4) + 3}{4} = \frac{260 + 3}{4} = \frac{263}{4} \]Step 2: Multiply the cost per litre by the number of litres: \[ \text{Total cost} = \frac{263}{4} \times 36 = \frac{263 \times 36}{4} \]Step 3: Simplify the fraction:
Divide numerator and denominator by 4: \[ = \frac{263 \times 9}{1} = 263 \times 9 = 2367 \]Answer: ₹2367


Q28: The cost of \(3\frac{1}{2}\) metres of cloth is ₹\(547\frac{3}{4}\). Find the cost of 1 metre of cloth.

Step 1: Convert mixed numbers into improper fractions.
Length of cloth = \[ 3\frac{1}{2} = \frac{(3 \times 2) + 1}{2} = \frac{7}{2} \text{ metres} \] Cost of \(3\frac{1}{2}\) metres = ₹\(547\frac{3}{4} = \frac{(547 \times 4) + 3}{4} = \frac{2188 + 3}{4} = \frac{2191}{4}\)
Step 2: Cost of 1 metre = \(\frac{\text{Total cost}}{\text{Length}}\) \[ = \frac{\frac{2191}{4}}{\frac{7}{2}} = \frac{2191}{4} \times \frac{2}{7} = \frac{2191 \times 2}{4 \times 7} = \frac{4382}{28} \]Step 3: Simplify the fraction:
Divide numerator and denominator by 2: \[ = \frac{2191}{14} \]Step 4: Convert improper fraction into mixed number: Divide 2191 by 14: \(2191 \div 14 = 156\) remainder \(7\)
So, \[ \frac{2191}{14} = 156 \frac{7}{14} = 156 \frac{1}{2} \]Answer: ₹156\frac{1}{2}


Q29: Tanvy cuts 54 m of Cloth into pieces, each of length \(3\frac{3}{8}\) m. How many pieces does she get?

Step 1: Convert the mixed fraction into an improper fraction.
Length of each piece = \(3\frac{3}{8} = \frac{(3 \times 8) + 3}{8} = \frac{24 + 3}{8} = \frac{27}{8}\) metres
Step 2: Total length of cloth = 54 metres (whole number can be written as fraction with denominator 1): \[ 54 = \frac{54}{1} \]Step 3: Number of pieces = \(\frac{\text{Total length}}{\text{Length of each piece}} = \frac{54}{1} \div \frac{27}{8} = \frac{54}{1} \times \frac{8}{27}\) \[ = \frac{54 \times 8}{1 \times 27} = \frac{432}{27} \]Step 4: Simplify the fraction:
Divide numerator and denominator by 27: \[ = \frac{432 \div 27}{27 \div 27} = \frac{16}{1} = 16 \]Answer: 16 pieces


Q30: A cord of length \(126\frac{1}{2}\) m has been cut into 46 pieces of equal length. What is the length of each piece?

Step 1: Convert the mixed fraction into an improper fraction.
Total length of the cord: \[ 126\frac{1}{2} = \frac{(126 \times 2) + 1}{2} = \frac{252 + 1}{2} = \frac{253}{2} \text{ metres} \]Step 2: Number of pieces = 46
Step 3: Length of each piece = \(\frac{\text{Total length}}{\text{Number of pieces}} = \frac{253}{2} \div 46 = \frac{253}{2} \times \frac{1}{46}\) \[ = \frac{253 \times 1}{2 \times 46} = \frac{253}{92}// = \frac{253 \div 23}{92 \div 23} = \frac{11}{4} \]Step 4: Simplify the fraction if possible.
Convert the improper fraction to a mixed fraction: \[ \frac{11}{4} = 2\frac{3}{4} \]Answer: Each piece is \(2\frac{3}{4}\) metres long.


Q31: A car travels \(283\frac{1}{2}\) km in \(4\frac{2}{3}\) hours. How far does it go in 1 hour?

Step 1: Convert mixed fractions to improper fractions.
Distance travelled = \(283\frac{1}{2}\) km = \(\frac{(283 \times 2) + 1}{2} = \frac{566 + 1}{2} = \frac{567}{2}\) km
Time taken = \(4\frac{2}{3}\) hours = \(\frac{(4 \times 3) + 2}{3} = \frac{12 + 2}{3} = \frac{14}{3}\) hours
Step 2: Distance travelled in 1 hour = \(\frac{\text{Total distance}}{\text{Total time}} = \frac{567}{2} \div \frac{14}{3}\) \[ = \frac{567}{2} \times \frac{3}{14} = \frac{567 \times 3}{2 \times 14} = \frac{1701}{28} \]Step 3: Simplify \(\frac{1701}{28}\)
Since 1701 and 28 have no common factors other than 1, convert to mixed fraction: \[ 1701 \div 28 = 60 \text{ remainder } 21 \] So, \[ \frac{1701}{28} = 60\frac{21}{28} \]Step 4: Simplify the fraction \(\frac{21}{28}\) by dividing numerator and denominator by 7: \[ \frac{21}{28} = \frac{3}{4} \]Answer: The car travels \(60\frac{3}{4}\) km in 1 hour.


Q32: The area of a rectangular plot of land is \(46\frac{2}{5}\) sq.m. If its length is \(7\frac{1}{4}\) m, find itd breadth.

Step 1: Convert mixed fractions to improper fractions.
Area \(= 46\frac{2}{5} = \frac{(46 \times 5) + 2}{5} = \frac{230 + 2}{5} = \frac{232}{5}\) sq.m.
Length \(= 7\frac{1}{4} = \frac{(7 \times 4) + 1}{4} = \frac{28 + 1}{4} = \frac{29}{4}\) m
Step 2: Using the formula: \[ \text{Breadth} = \frac{\text{Area}}{\text{Length}} = \frac{\frac{232}{5}}{\frac{29}{4}} = \frac{232}{5} \times \frac{4}{29} = \frac{232 \times 4}{5 \times 29} = \frac{928}{145} \]Step 3: Simplify the fraction \(\frac{928}{145}\) to a mixed fraction:
Divide 928 by 145: \[ 928 \div 145 = 6 \text{ remainder } 58 \] So, \[ \frac{928}{145} = 6\frac{58}{145} \]Step 4: Check if \(\frac{58}{145}\) can be simplified.
Factors of 58: 1, 2, 29, 58
Factors of 145: 1, 5, 29, 145
Common factor = 29
Divide numerator and denominator by 29: \[ \frac{58}{145} = \frac{2}{5} \]Answer: The breadth of the rectangular plot is \(6\frac{2}{5}\) meters.


Q33: The product of two fractions is \(15\frac{3}{4}\). If one of them is \(4\frac{1}{2}\), find the other.

Step 1: Convert mixed fractions into improper fractions.
Product \(= 15\frac{3}{4} = \frac{(15 \times 4) + 3}{4} = \frac{60 + 3}{4} = \frac{63}{4}\)
One fraction \(= 4\frac{1}{2} = \frac{(4 \times 2) + 1}{2} = \frac{8 + 1}{2} = \frac{9}{2}\)
Step 2: Use the product formula: \[ \text{Product} = \text{First fraction} \times \text{Second fraction} \\ \Rightarrow \frac{63}{4} = \frac{9}{2} \times x \]Step 3: Solve for \(x\): \[ x = \frac{63}{4} \div \frac{9}{2} = \frac{63}{4} \times \frac{2}{9} = \frac{63 \times 2}{4 \times 9} = \frac{126}{36} = \frac{7}{2} \]Step 4: Convert \(\frac{7}{2}\) into a mixed fraction: \[ 7 \div 2 = 3 \text{ remainder } 1 \Rightarrow \frac{7}{2} = 3\frac{1}{2} \]Answer: The other fraction is \(3\frac{1}{2}\).


previous
next

Share the Post:

Leave a Comment

Your email address will not be published. Required fields are marked *

Related Posts​

  • Type casting in Java
    The process of converting the value of one data type to another data type is known as typecasting.
  • Identities
    Step by Step solutions of Test Yourself Concise Mathematics ICSE Class-8 Maths chapter 12- Identities by Selina is provided.

Join Our Newsletter

Name
Email
The form has been submitted successfully!
There has been some error while submitting the form. Please verify all form fields again.

Scroll to Top