Fractions

Fractions

Step by Step solutions of RS Aggarwal ICSE Class-6 Maths chapter 4- Fractions by Goyal Brothers Prakashan is provided.

Table of Contents

Exercise: 4-F

Q1: Find:

i. \(\frac{1}{8}\) of 40

Step 1: Multiply the fraction by the whole number: \[ \frac{1}{8} \times 40 = \frac{1 \times 40}{8} = \frac{40}{8} \] Step 2: Simplify the fraction: \[ \frac{40}{8} = 5 \] Answer: \(5\)

ii. \(\frac{4}{11}\) of \(4\frac{2}{5}\)

Step 1: Convert mixed fraction to improper fraction: \[ 4\frac{2}{5} = \frac{(4 \times 5) + 2}{5} = \frac{20 + 2}{5} = \frac{22}{5} \] Step 2: Multiply: \[ \frac{4}{11} \times \frac{22}{5} = \frac{4 \times 22}{11 \times 5} = \frac{88}{55} \] Step 3: Simplify: \[ \frac{88}{55} = \frac{8}{5} = 1\frac{3}{5} \] Answer: \(1\frac{3}{5}\)

iii. \(1\frac{3}{5}\) of \(6\frac{1}{4}\)

Step 1: Convert both mixed fractions to improper fractions: \[ 1\frac{3}{5} = \frac{(1 \times 5) + 3}{5} = \frac{8}{5}, \\ 6\frac{1}{4} = \frac{(6 \times 4) + 1}{4} = \frac{25}{4} \] Step 2: Multiply: \[ \frac{8}{5} \times \frac{25}{4} = \frac{8 \times 25}{5 \times 4} = \frac{200}{20} = 10 \] Answer: 10

iv. \(\frac{3}{4}\) of ₹1

Step 1: Multiply: \[ \frac{3}{4} \times 1 = \frac{3}{4} \] Answer: ₹\(\frac{3}{4}\) = ₹0.75

v. \(\frac{5}{8}\) of 1 km

Step 1: Multiply: \[ \frac{5}{8} \times 1 = \frac{5}{8} = 0.625 \] Answer: \(\frac{5}{8}\) km = 625 m

vi. \(\frac{5}{12}\) of 1 hour

Step 1: Multiply: \[ \frac{5}{12} \times 1 = \frac{5}{12} \\ = \frac{5 \times \ 60}{12} = 25 \] Answer: \(\frac{5}{12}\) hour = 25 minutes


Q2: Simplify: \(1\frac{1}{6}\div1\frac{5}{9}\times3\frac{1}{3}\)

Step 1: \[ 1\frac{1}{6} = \frac{7}{6}, \\ 1\frac{5}{9} = \frac{14}{9}, \\ 3\frac{1}{3} = \frac{10}{3} \]Step 2: Division: \[ \frac{7}{6} \div \frac{14}{9} = \frac{7}{6} \times \frac{9}{14} \]Step 3: Multiply: \[ \frac{7}{6} \times \frac{9}{14} = \frac{7 \times 9}{6 \times 14} = \frac{63}{84} \]Step 4: Simplify: \[ \frac{63}{84} = \frac{3}{4} \]Step 5: \[ \frac{3}{4} \times \frac{10}{3} = \frac{3 \times 10}{4 \times 3} = \frac{30}{12} \]Step 6: Simplify: \[ \frac{30}{12} = \frac{5}{2} = 2\frac{1}{2} \]Answer: \(2\frac{1}{2}\)


Q3: Simplify: \(1\frac{1}{3} \div \left(\frac{3}{7} \text{ of } 2\frac{5}{8}\right) + 1\frac{1}{9}\)

Step 1: \[ 1\frac{1}{3} = \frac{4}{3}, \\ 2\frac{5}{8} = \frac{21}{8}, \\ 1\frac{1}{9} = \frac{10}{9} \]Step 2: Multiply: \[ \frac{3}{7} \text{ of } \frac{21}{8} = \frac{3}{7} \times \frac{21}{8} = \frac{63}{56} \]Step 3: \[ \frac{4}{3} \div \frac{63}{56} = \frac{4}{3} \times \frac{56}{63} = \frac{224}{189} \]Step 4: Simplify \( \frac{224}{189} \): GCD of 224 and 189 is 7 \[ \frac{224 \div 7}{189 \div 7} = \frac{32}{27} = 1\frac{5}{27} \]Step 5: Convert \( \frac{10}{9} \) to denominator 27: \[ \frac{10}{9} = \frac{30}{27} \]Step 6: Add: \[ \frac{32}{27} + \frac{30}{27} = \frac{62}{27} = 2\frac{8}{27} \]Answer: \(2\frac{8}{27}\)


Q4: Simplify: \(6\frac{1}{5} \div \left(3\frac{1}{10} \text{ of } 2\frac{1}{2}\right) \div \frac{1}{4}\)

Step 1: \[ 6\frac{1}{5} = \frac{31}{5}, \\ 3\frac{1}{10} = \frac{31}{10}, \\ 2\frac{1}{2} = \frac{5}{2} \]Step 2: \[ \frac{31}{10} \text{ of } \frac{5}{2} = \frac{31}{10} \times \frac{5}{2} = \frac{155}{20} \]Step 3: Simplify \( \frac{155}{20} \): GCD of 155 and 20 is 5 \[ \frac{155 \div 5}{20 \div 5} = \frac{31}{4} \]Step 4: First division: \[ \frac{31}{5} \div \frac{31}{4} = \frac{31}{5} \times \frac{4}{31} = \frac{4}{5} \]Step 5: Second division: \[ \frac{4}{5} \div \frac{1}{4} = \frac{4}{5} \times \frac{4}{1} = \frac{16}{5} = 3\frac{1}{5} \]Answer: \(3\frac{1}{5}\)


Q5: Simplify: \(3\frac{2}{3} – \frac{3}{11} \text{ of } 2\frac{3}{4} \div 1\frac{1}{4} \times 1\frac{2}{3} + \frac{1}{3}\)

Step 1: \[ 3\frac{2}{3} = \frac{11}{3},\\ 2\frac{3}{4} = \frac{11}{4},\\ 1\frac{1}{4} = \frac{5}{4},\\ 1\frac{2}{3} = \frac{5}{3} \]Step 2: \[ \frac{3}{11} \text{ of } \frac{11}{4} = \frac{3}{11} \times \frac{11}{4} = \frac{33}{44} = \frac{3}{4} \]Step 3: Now divide by \( \frac{5}{4} \): \[ \frac{3}{4} \div \frac{5}{4} = \frac{3}{4} \times \frac{4}{5} = \frac{12}{20} = \frac{3}{5} \]Step 4: Multiply by \( \frac{5}{3} \): \[ \frac{3}{5} \times \frac{5}{3} = \frac{15}{15} = 1 \]Step 5: \[ \frac{11}{3} – 1 + \frac{1}{3} \]Step 6: \[ \frac{11}{3} – 1 = \frac{11}{3} – \frac{3}{3} = \frac{8}{3} \]Step 7: \[ \frac{8}{3} + \frac{1}{3} = \frac{9}{3} = 3 \]Answer: 3


Q6: Simplify: \(\left(2\frac{2}{7}\ \text{ of } 15\frac{3}{4}\right)\times2\frac{1}{4}\div\left(\frac{4}{7}\ \text{ of } 2\frac{5}{8}\right)\)

Step 1: \[ 2\frac{2}{7} = \frac{16}{7},\\ 15\frac{3}{4} = \frac{63}{4},\\ 2\frac{1}{4} = \frac{9}{4},\\ 2\frac{5}{8} = \frac{21}{8} \]Step 2: \[ \frac{16}{7} \text{ of } \frac{63}{4} = \frac{16}{7} \times \frac{63}{4} = \frac{1008}{28} = 36 \]Step 3: \[ \frac{4}{7} \text{ of } \frac{21}{8} = \frac{4}{7} \times \frac{21}{8} = \frac{84}{56} = \frac{3}{2} \]Step 4: \[ (36) \times \frac{9}{4} \div \frac{3}{2} \]

iv. First multiply, then divide:

Step 5: \[ 36 \times \frac{9}{4} = \frac{324}{4} = 81 \]Step 6: \[ 81 \div \frac{3}{2} = 81 \times \frac{2}{3} = \frac{162}{3} = 54 \]Answer: 54


Q7: Simplify: \(1\div\frac{4}{7}-\frac{1}{3}\ \text{of}\ 3\frac{3}{4}+\frac{1}{2}\div3\)

Step 1: Convert all mixed numbers to improper fractions: \[ 3\frac{3}{4} = \frac{15}{4} \]Step 2: Simplify each part of the expression: \[ \frac{1}{3} \text{ of } \frac{15}{4} = \frac{1}{3} \times \frac{15}{4} = \frac{15}{12} = \frac{5}{4} \]Step 3: \[ 1 \div \frac{4}{7} = 1 \times \frac{7}{4} = \frac{7}{4} \]Step 4: \[ \frac{1}{2} \div 3 = \frac{1}{2} \times \frac{1}{3} = \frac{1}{6} \]Step 5: Put it all together: \[ \frac{7}{4} – \frac{5}{4} + \frac{1}{6} \]Step 6: \[ \left(\frac{7}{4} – \frac{5}{4}\right) = \frac{2}{4} = \frac{1}{2} \]Step 7: \[ \frac{1}{2} + \frac{1}{6} = \frac{3}{6} + \frac{1}{6} = \frac{4}{6} = \frac{2}{3} \]Answer: \(\frac{2}{3}\)


Q8: Simplify: \(\left(\left(\frac{2}{3}+\frac{4}{9}\right)\ of\ \frac{3}{5}\right)\div1\frac{2}{3}\times1\frac{1}{4}-\frac{1}{3}\)

Step 1: First, add \(\frac{2}{3}+\frac{4}{9}\): \[ \frac{2}{3} = \frac{6}{9},\\ \frac{6}{9} + \frac{4}{9} = \frac{10}{9} \]Step 2: Find the product with \(\frac{3}{5}\): \[ \frac{10}{9} \times \frac{3}{5} = \frac{30}{45} = \frac{2}{3} \]Step 3: Convert mixed numbers to improper fractions: \[ 1\frac{2}{3} = \frac{5}{3}, \\ 1\frac{1}{4} = \frac{5}{4} \]Step 4: Continue with division and multiplication: \[ \frac{2}{3} \div \frac{5}{3} = \frac{2}{3} \times \frac{3}{5} = \frac{6}{15} = \frac{2}{5} \]Step 5: \[ \frac{2}{5} \times \frac{5}{4} = \frac{10}{20} = \frac{1}{2} \]Step 6: Subtract \(\frac{1}{3}\): \[ \frac{1}{2} – \frac{1}{3} = \frac{3}{6} – \frac{2}{6} = \frac{1}{6} \]Answer: \(\frac{1}{6}\)


Q9: Simplify: \(\left(\frac{14}{15}\div1\frac{1}{6}+\frac{7}{10}\right)\times\frac{3}{4}\)

Step 1: Convert mixed number to improper fraction: \[ 1\frac{1}{6} = \frac{7}{6} \]Step 2: Divide \(\frac{14}{15}\div\frac{7}{6}\): \[ \frac{14}{15} \div \frac{7}{6} = \frac{14}{15} \times \frac{6}{7} = \frac{84}{105} = \frac{4}{5} \]Step 3: Add \(\frac{4}{5} + \frac{7}{10}\): \[ \frac{4}{5} = \frac{8}{10},\\ \frac{8}{10} + \frac{7}{10} = \frac{15}{10} = \frac{3}{2} \]Step 4: Multiply with \(\frac{3}{4}\): \[ \frac{3}{2} \times \frac{3}{4} = \frac{9}{8} = 1\frac{1}{8} \]Answer: \(1\frac{1}{8}\)


Q10: Simplify: \(\frac{1}{3}\left(2\frac{1}{2}+3\frac{1}{3}\right)\div\frac{2}{9}\left(3\frac{1}{8}-1\frac{1}{12}\right)\)

i.

Step 1: Convert mixed numbers to improper fractions: \[ 2\frac{1}{2} = \frac{5}{2}, \\ 3\frac{1}{3} = \frac{10}{3}, \\ 3\frac{1}{8} = \frac{25}{8}, \\ 1\frac{1}{12} = \frac{13}{12} \]Step 2: Evaluate the expressions in parentheses: \[ \frac{5}{2} + \frac{10}{3} = \frac{15}{6} + \frac{20}{6} = \frac{35}{6} \\ \frac{25}{8} – \frac{13}{12} = \text{LCM of 8 and 12 is 24} \\ \frac{75}{24} – \frac{26}{24} = \frac{49}{24} \]Step 3: Multiply with outside fractions: \[ \frac{1}{3} \times \frac{35}{6} = \frac{35}{18} \\ \frac{2}{9} \times \frac{49}{24} = \frac{98}{216} = \frac{49}{108} \]Step 4: Divide the two results: \[ \frac{35}{18} \div \frac{49}{108} = \frac{35}{18} \times \frac{108}{49} \\ = \frac{3780}{882} = \frac{210}{49} = \frac{30}{7} = 4\frac{2}{7} \]Answer: \(4\frac{2}{7}\)


Q11: Simplify: \(\left(\frac{1}{4}-\frac{1}{9}\right)\div\left(\frac{1}{2}+\frac{1}{4}\div\frac{1}{3}\right)\)

Step 1: Solve the expression in the numerator: \[ \frac{1}{4} – \frac{1}{9} = \text{LCM of 4 and 9 is 36} \\ = \frac{9}{36} – \frac{4}{36} = \frac{5}{36} \]Step 2: Solve the expression inside the denominator: \[ \frac{1}{4} \div \frac{1}{3} = \frac{1}{4} \times \frac{3}{1} = \frac{3}{4} \\ \text{Now, } \frac{1}{2} + \frac{3}{4} = \frac{2}{4} + \frac{3}{4} = \frac{5}{4} \]Step 3: Divide the numerator by the denominator: \[ \frac{5}{36} \div \frac{5}{4} = \frac{5}{36} \times \frac{4}{5} = \frac{20}{180} = \frac{1}{9} \]Answer: \(\frac{1}{9}\)


Q12: Simplify: \(3\frac{7}{8} – \left\{ 1\frac{3}{8} \div \left( 2\frac{4}{5} – 1\frac{7}{10} \right) \right\}\)

Step 1: Solve the expression inside the parentheses first:
Convert mixed fractions to improper fractions: \[ 2\frac{4}{5} = \frac{14}{5}, \\ 1\frac{7}{10} = \frac{17}{10} \]Step 2: Find the difference: \[ 2\frac{4}{5} – 1\frac{7}{10} = \frac{14}{5} – \frac{17}{10} \] LCM of 5 and 10 is 10: \[ = \frac{28}{10} – \frac{17}{10} = \frac{11}{10} \]Step 3: Now solve the division inside the braces:
Convert \(1\frac{3}{8}\) to improper fraction: \[ 1\frac{3}{8} = \frac{11}{8} \]Step 4: Divide: \[ \frac{11}{8} \div \frac{11}{10} = \frac{11}{8} \times \frac{10}{11} = \frac{10}{8} = \frac{5}{4} = 1\frac{1}{4} \]Step 5: Finally, subtract this from \(3\frac{7}{8}\):
Convert \(3\frac{7}{8}\) to improper fraction: \[ 3\frac{7}{8} = \frac{31}{8} \]Step 6: Subtract: \[ \frac{31}{8} – \frac{5}{4} = \frac{31}{8} – \frac{10}{8} = \frac{21}{8} = 2\frac{5}{8} \]Answer: \(2\frac{5}{8}\)


Q13: Simplify: \(3 \div \left[ 3 \times \left\{ 3 – \left( 3 – \frac{1}{4} \right) \right\} \right]\)

Step 1: Solve the innermost parentheses first:
Calculate \(3 – \frac{1}{4}\): \[ 3 – \frac{1}{4} = \frac{12}{4} – \frac{1}{4} = \frac{11}{4} \]Step 2: Substitute and solve the expression inside the curly braces \(\{\}\):
Calculate: \[ 3 – \frac{11}{4} = \frac{12}{4} – \frac{11}{4} = \frac{1}{4} \]Step 3: Now multiply by 3 (inside the square brackets \([]\)): \[ 3 \times \frac{1}{4} = \frac{3}{4} \]Step 4: Finally, divide 3 by the result obtained: \[ 3 \div \frac{3}{4} = 3 \times \frac{4}{3} = 4 \]Answer: 4


Q14: Simplify: \(5\frac{1}{3} – \left[ 2\frac{1}{3} \div \left\{ \frac{3}{4} – \frac{1}{2} \times \left( \frac{7}{10} – \frac{3}{5} \right) \right\} \right]\)

Step 1: Solve inside the innermost parentheses \(\left(\frac{7}{10} – \frac{3}{5}\right)\):
Convert \(\frac{3}{5}\) to denominator 10: \[ \frac{3}{5} = \frac{6}{10} \] Calculate: \[ \frac{7}{10} – \frac{6}{10} = \frac{1}{10} \]Step 2: Multiply \(\frac{1}{2}\) by the result \(\frac{1}{10}\): \[ \frac{1}{2} \times \frac{1}{10} = \frac{1}{20} \]Step 3: Subtract from \(\frac{3}{4}\):
Convert \(\frac{3}{4}\) to denominator 20: \[ \frac{3}{4} = \frac{15}{20} \] Calculate: \[ \frac{15}{20} – \frac{1}{20} = \frac{14}{20} = \frac{7}{10} \]Step 4: Convert mixed numbers to improper fractions: \[ 5\frac{1}{3} = \frac{16}{3}, \\ 2\frac{1}{3} = \frac{7}{3} \]Step 5: Divide \(\frac{7}{3}\) by \(\frac{7}{10}\): \[ \frac{7}{3} \div \frac{7}{10} = \frac{7}{3} \times \frac{10}{7} = \frac{10}{3} \]Step 6: Subtract the result from \(\frac{16}{3}\): \[ \frac{16}{3} – \frac{10}{3} = \frac{6}{3} = 2 \]Answer: 2


previous
next

Share the Post:

Leave a Comment

Your email address will not be published. Required fields are marked *

Related Posts​

  • Type casting in Java
    The process of converting the value of one data type to another data type is known as typecasting.
  • Identities
    Step by Step solutions of Test Yourself Concise Mathematics ICSE Class-8 Maths chapter 12- Identities by Selina is provided.

Join Our Newsletter

Name
Email
The form has been submitted successfully!
There has been some error while submitting the form. Please verify all form fields again.

Scroll to Top