Fractions

Fractions

Step by Step solutions of RS Aggarwal ICSE Class-6 Maths chapter 4- Fractions by Goyal Brothers Prakashan is provided.

Table of Contents

Exercise: 4-D

Q1: Find the sum of:

i. \(\frac{2}{7} + \frac{3}{7}\)

Step 1: Denominators are same, so add numerators. \[ \frac{2}{7} + \frac{3}{7} = \frac{2+3}{7} = \frac{5}{7} \] Answer: \(\frac{5}{7}\)

ii. \(\frac{5}{8} + \frac{1}{8}\)

Step 1: Denominators are same, so add numerators. \[ \frac{5}{8} + \frac{1}{8} = \frac{5+1}{8} = \frac{6}{8} \] Step 2: Simplify the fraction. \[ \frac{6}{8} = \frac{3}{4} \] Answer: \(\frac{3}{4}\)

iii. \(\frac{7}{9} + \frac{4}{9}\)

Step 1: Denominators are same, so add numerators. \[ \frac{7}{9} + \frac{4}{9} = \frac{7+4}{9} = \frac{11}{9} \] Step 2: Convert improper fraction to mixed number. \[ \frac{11}{9} = 1 \frac{2}{9} \] Answer: \(1 \frac{2}{9}\)

iv. \(1\frac{5}{6} + \frac{1}{6}\)

Step 1: Convert mixed number to improper fraction. \[ 1 \frac{5}{6} = \frac{6 \times 1 + 5}{6} = \frac{11}{6} \] Step 2: Add fractions with same denominator. \[ \frac{11}{6} + \frac{1}{6} = \frac{11+1}{6} = \frac{12}{6} = 2 \] Answer: 2


Q2: Find the sum of:

i. \(\frac{5}{14} + \frac{3}{14} + \frac{1}{14}\)

Step 1: Denominators are same, so add numerators. \[ \frac{5}{14} + \frac{3}{14} + \frac{1}{14} = \frac{5 + 3 + 1}{14} = \frac{9}{14} \] Answer: \(\frac{9}{14}\)

ii. \(\frac{7}{12} + \frac{5}{12} + \frac{11}{12}\)

Step 1: Denominators are same, so add numerators. \[ \frac{7}{12} + \frac{5}{12} + \frac{11}{12} = \frac{7 + 5 + 11}{12} = \frac{23}{12} \] Step 2: Convert improper fraction to mixed number. \[ \frac{23}{12} = 1 \frac{11}{12} \] Answer: \(1 \frac{11}{12}\)

iii. \(1 \frac{7}{8} + \frac{3}{8} + 1 \frac{5}{8}\)

Step 1: Convert mixed numbers to improper fractions. \[ 1 \frac{7}{8} = \frac{8 \times 1 + 7}{8} = \frac{15}{8} \\ 1 \frac{5}{8} = \frac{8 \times 1 + 5}{8} = \frac{13}{8} \] Step 2: Add all fractions (denominators are same). \[ \frac{15}{8} + \frac{3}{8} + \frac{13}{8} = \frac{15 + 3 + 13}{8} = \frac{31}{8} \] Step 3: Convert improper fraction to mixed number. \[ \frac{31}{8} = 3 \frac{7}{8} \] Answer: \(3 \frac{7}{8}\)


Q3: Find the sum of:

i. \(\frac{4}{9} + \frac{5}{6}\)

Step 1: Find the LCM of denominators 9 and 6.
LCM (9,6) = 18
Step 2: Convert fractions to equivalent fractions with denominator 18. \[ \frac{4}{9} = \frac{4 \times 2}{9 \times 2} = \frac{8}{18} \\ \frac{5}{6} = \frac{5 \times 3}{6 \times 3} = \frac{15}{18} \] Step 3: Add the fractions. \[ \frac{8}{18} + \frac{15}{18} = \frac{8 + 15}{18} = \frac{23}{18} \] Step 4: Convert improper fraction to mixed number. \[ \frac{23}{18} = 1 \frac{5}{18} \] Answer: \(1 \frac{5}{18}\)

ii. \(\frac{5}{12} + \frac{9}{16}\)

Step 1: Find the LCM of denominators 12 and 16.
LCM (12,16) = 48
Step 2: Convert fractions to equivalent fractions with denominator 48. \[ \frac{5}{12} = \frac{5 \times 4}{12 \times 4} = \frac{20}{48} \\ \frac{9}{16} = \frac{9 \times 3}{16 \times 3} = \frac{27}{48} \] Step 3: Add the fractions. \[ \frac{20}{48} + \frac{27}{48} = \frac{20 + 27}{48} = \frac{47}{48} \] Answer: \(\frac{47}{48}\)

iii. \(\frac{7}{12} + \frac{13}{18}\)

Step 1: Find the LCM of denominators 12 and 18.
LCM (12,18) = 36
Step 2: Convert fractions to equivalent fractions with denominator 36. \[ \frac{7}{12} = \frac{7 \times 3}{12 \times 3} = \frac{21}{36} \\ \frac{13}{18} = \frac{13 \times 2}{18 \times 2} = \frac{26}{36} \] Step 3: Add the fractions. \[ \frac{21}{36} + \frac{26}{36} = \frac{21 + 26}{36} = \frac{47}{36} \] Step 4: Convert improper fraction to mixed number. \[ \frac{47}{36} = 1 \frac{11}{36} \] Answer: \(1 \frac{11}{36}\)


Q4: Find the sum of:

i. \(\frac{3}{10} + \frac{8}{15} + \frac{7}{20}\)

Step 1: Find the LCM of denominators 10, 15, and 20.
LCM (10,15,20) = 60
Step 2: Convert each fraction to have denominator 60. \[ \frac{3}{10} = \frac{3 \times 6}{10 \times 6} = \frac{18}{60} \\ \frac{8}{15} = \frac{8 \times 4}{15 \times 4} = \frac{32}{60} \\ \frac{7}{20} = \frac{7 \times 3}{20 \times 3} = \frac{21}{60} \] Step 3: Add the fractions. \[ \frac{18}{60} + \frac{32}{60} + \frac{21}{60} = \frac{18 + 32 + 21}{60} = \frac{71}{60} \] Step 4: Convert improper fraction to mixed number. \[ \frac{71}{60} = 1 \frac{11}{60} \] Answer: \(1 \frac{11}{60}\)

ii. \(\frac{7}{8} + \frac{9}{16} + \frac{17}{24}\)

Step 1: Find the LCM of denominators 8, 16, and 24.
LCM (8,16,24) = 48
Step 2: Convert each fraction to have denominator 48. \[ \frac{7}{8} = \frac{7 \times 6}{8 \times 6} = \frac{42}{48} \\ \frac{9}{16} = \frac{9 \times 3}{16 \times 3} = \frac{27}{48} \\ \frac{17}{24} = \frac{17 \times 2}{24 \times 2} = \frac{34}{48} \] Step 3: Add the fractions. \[ \frac{42}{48} + \frac{27}{48} + \frac{34}{48} = \frac{42 + 27 + 34}{48} = \frac{103}{48} \] Step 4: Convert improper fraction to mixed number. \[ \frac{103}{48} = 2 \frac{7}{48} \] Answer: \(2 \frac{7}{48}\)

iii. \(\frac{5}{6} + \frac{8}{9} + \frac{11}{18} + \frac{13}{27}\)

Step 1: Find the LCM of denominators 6, 9, 18, and 27.
LCM (6,9,18,27) = 54
Step 2: Convert each fraction to have denominator 54. \[ \frac{5}{6} = \frac{5 \times 9}{6 \times 9} = \frac{45}{54} \\ \frac{8}{9} = \frac{8 \times 6}{9 \times 6} = \frac{48}{54} \\ \frac{11}{18} = \frac{11 \times 3}{18 \times 3} = \frac{33}{54} \\ \frac{13}{27} = \frac{13 \times 2}{27 \times 2} = \frac{26}{54} \] Step 3: Add the fractions. \[ \frac{45}{54} + \frac{48}{54} + \frac{33}{54} + \frac{26}{54} \\ = \frac{45 + 48 + 33 + 26}{54} = \frac{152}{54} \] Step 4: Simplify the fraction. \[ \frac{152}{54} = \frac{76}{27} \] Step 5: Convert improper fraction to mixed number. \[ \frac{76}{27} = 2 \frac{22}{27} \] Answer: \(2 \frac{22}{27}\)


Q5: Find the sum of:

i. \(4\frac{1}{6} + 2\frac{5}{8} + 3\frac{7}{12}\)

Step 1: Convert mixed fractions to improper fractions. \[ 4\frac{1}{6} = \frac{4 \times 6 + 1}{6} = \frac{25}{6} \\ 2\frac{5}{8} = \frac{2 \times 8 + 5}{8} = \frac{21}{8} \\ 3\frac{7}{12} = \frac{3 \times 12 + 7}{12} = \frac{43}{12} \] Step 2: Find LCM of denominators 6, 8, and 12.
LCM (6,8,12) = 24
Step 3: Convert fractions to denominator 24. \[ \frac{25}{6} = \frac{25 \times 4}{6 \times 4} = \frac{100}{24} \\ \frac{21}{8} = \frac{21 \times 3}{8 \times 3} = \frac{63}{24} \\ \frac{43}{12} = \frac{43 \times 2}{12 \times 2} = \frac{86}{24} \] Step 4: Add the fractions. \[ \frac{100}{24} + \frac{63}{24} + \frac{86}{24} = \frac{249}{24} \] Step 5: Convert improper fraction to mixed number. \[ \frac{249}{24} = 10 \frac{9}{24} = 10 \frac{3}{8} \] Answer: \(10 \frac{3}{8}\)

ii. \(1\frac{1}{2} + 2\frac{2}{3} + 3\frac{3}{4} + 4\frac{4}{5}\)

Step 1: Convert mixed fractions to improper fractions. \[ 1\frac{1}{2} = \frac{1 \times 2 + 1}{2} = \frac{3}{2} \\ 2\frac{2}{3} = \frac{2 \times 3 + 2}{3} = \frac{8}{3} \\ 3\frac{3}{4} = \frac{3 \times 4 + 3}{4} = \frac{15}{4} \\ 4\frac{4}{5} = \frac{4 \times 5 + 4}{5} = \frac{24}{5} \] Step 2: Find LCM of denominators 2, 3, 4, and 5.
LCM (2,3,4,5) = 60
Step 3: Convert fractions to denominator 60. \[ \frac{3}{2} = \frac{3 \times 30}{2 \times 30} = \frac{90}{60} \\ \frac{8}{3} = \frac{8 \times 20}{3 \times 20} = \frac{160}{60} \\ \frac{15}{4} = \frac{15 \times 15}{4 \times 15} = \frac{225}{60} \\ \frac{24}{5} = \frac{24 \times 12}{5 \times 12} = \frac{288}{60} \] Step 4: Add the fractions. \[ \frac{90}{60} + \frac{160}{60} + \frac{225}{60} + \frac{288}{60} = \frac{763}{60} \] Step 5: Convert improper fraction to mixed number. \[ \frac{763}{60} = 12 \frac{43}{60} \] Answer: \(12 \frac{43}{60}\)

iii. \(3\frac{1}{3} + 2\frac{2}{9} + 4\frac{1}{2} + 1\frac{13}{18}\)

Step 1: Convert mixed fractions to improper fractions. \[ 3\frac{1}{3} = \frac{3 \times 3 + 1}{3} = \frac{10}{3} \\ 2\frac{2}{9} = \frac{2 \times 9 + 2}{9} = \frac{20}{9} \\ 4\frac{1}{2} = \frac{4 \times 2 + 1}{2} = \frac{9}{2} \\ 1\frac{13}{18} = \frac{1 \times 18 + 13}{18} = \frac{31}{18} \] Step 2: Find LCM of denominators 3, 9, 2, and 18.
LCM (3,9,2,18) = 18
Step 3: Convert fractions to denominator 18. \[ \frac{10}{3} = \frac{10 \times 6}{3 \times 6} = \frac{60}{18} \\ \frac{20}{9} = \frac{20 \times 2}{9 \times 2} = \frac{40}{18} \\ \frac{9}{2} = \frac{9 \times 9}{2 \times 9} = \frac{81}{18} \\ \frac{31}{18} = \frac{31}{18} \] Step 4: Add the fractions. \[ \frac{60}{18} + \frac{40}{18} + \frac{81}{18} + \frac{31}{18} = \frac{212}{18} \] Step 5: Simplify the fraction. \[ \frac{212}{18} = \frac{106}{9} \] Step 6: Convert improper fraction to mixed number. \[ \frac{106}{9} = 11 \frac{7}{9} \] Answer: \(11 \frac{7}{9}\)


Q6: Find the difference:

i. \(\frac{9}{11} – \frac{5}{11}\)

Step 1: Since denominators are the same, subtract numerators. \[ \frac{9}{11} – \frac{5}{11} = \frac{9 – 5}{11} = \frac{4}{11} \] Answer: \(\frac{4}{11}\)

ii. \(8\frac{5}{7} – \frac{6}{7}\)

Step 1: Convert mixed fraction to improper fraction. \[ 8\frac{5}{7} = \frac{8 \times 7 + 5}{7} = \frac{61}{7} \] Step 2: Subtract the fractions (denominator same). \[ \frac{61}{7} – \frac{6}{7} = \frac{61 – 6}{7} = \frac{55}{7} \] Step 3: Convert improper fraction to mixed number. \[ \frac{55}{7} = 7 \frac{6}{7} \] Answer: \(7 \frac{6}{7}\)

iii. \(3\frac{3}{8} – 1\frac{7}{8}\)

Step 1: Convert mixed fractions to improper fractions. \[ 3\frac{3}{8} = \frac{3 \times 8 + 3}{8} = \frac{27}{8} \\ 1\frac{7}{8} = \frac{1 \times 8 + 7}{8} = \frac{15}{8} \] Step 2: Subtract the fractions (denominators are same). \[ \frac{27}{8} – \frac{15}{8} = \frac{27 – 15}{8} = \frac{12}{8} \] Step 3: Simplify the fraction. \[ \frac{12}{8} = \frac{3}{2} = 1 \frac{1}{2} \] Answer: \(1 \frac{1}{2}\)

iv. \(\frac{7}{4} – \frac{3}{4}\)

Step 1: Subtract the numerators as denominators are same. \[ \frac{7}{4} – \frac{3}{4} = \frac{7 – 3}{4} = \frac{4}{4} = 1 \] Answer: \(1\)


Q7: Find the difference:

i. \(\frac{7}{15} – \frac{9}{20}\)

Step 1: Find LCM of 15 and 20.
LCM(15, 20) = 60 \[ \frac{7}{15} = \frac{28}{60},\quad \frac{9}{20} = \frac{27}{60} \] Step 2: Subtract the numerators. \[ \frac{28}{60} – \frac{27}{60} = \frac{1}{60} \] Answer: \(\frac{1}{60}\)


ii. \(4\frac{1}{7} – 2\frac{1}{14}\)

Step 1: Convert to improper fractions. \[ 4\frac{1}{7} = \frac{29}{7},\quad 2\frac{1}{14} = \frac{29}{14} \] Step 2: Find LCM of 7 and 14 = 14 \[ \frac{29}{7} = \frac{58}{14},\quad \frac{29}{14} = \frac{29}{14} \\ \frac{58}{14} – \frac{29}{14} = \frac{29}{14} \] Step 3: Convert to mixed number. \[ \frac{29}{14} = 2 \frac{1}{14} \] Answer: \(2 \frac{1}{14}\)

iii. \(1\frac{7}{8} – \frac{5}{12}\)

Step 1: Convert mixed to improper fraction. \[ 1\frac{7}{8} = \frac{15}{8} \] Step 2: Find LCM of 8 and 12 = 24 \[ \frac{15}{8} = \frac{45}{24},\quad \frac{5}{12} = \frac{10}{24} \] Step 3: Subtract: \[ \frac{45}{24} – \frac{10}{24} = \frac{35}{24} \] Step 4: Convert to mixed number. \[ \frac{35}{24} = 1 \frac{11}{24} \] Answer: \(1 \frac{11}{24}\)

iv. \(5 – 2\frac{3}{4}\)

Step 1: Convert mixed number to improper fraction. \[ 2\frac{3}{4} = \frac{11}{4} \\ 5 = \frac{20}{4} \] Step 2: Subtract: \[ \frac{20}{4} – \frac{11}{4} = \frac{9}{4} = 2 \frac{1}{4} \] Answer: \(2 \frac{1}{4}\)


Q8: Find the difference:

i. \(5\frac{1}{8} – 4\frac{1}{12}\)

Step 1: Convert to improper fractions. \[ 5\frac{1}{8} = \frac{41}{8},\quad 4\frac{1}{12} = \frac{49}{12} \] Step 2: Find LCM of 8 and 12 = 24 \[ \frac{41}{8} = \frac{123}{24},\quad \frac{49}{12} = \frac{98}{24} \] Step 3: Subtract: \[ \frac{123}{24} – \frac{98}{24} = \frac{25}{24} = 1 \frac{1}{24} \] Answer: \(1 \frac{1}{24}\)

ii. \(6\frac{1}{6} – 3\frac{7}{10}\)

Step 1: Convert to improper fractions. \[ 6\frac{1}{6} = \frac{37}{6},\quad 3\frac{7}{10} = \frac{37}{10} \] Step 2: Find LCM of 6 and 10 = 30 \[ \frac{37}{6} = \frac{185}{30},\quad \frac{37}{10} = \frac{111}{30} \] Step 3: Subtract: \[ \frac{185}{30} – \frac{111}{30} = \frac{74}{30} \] Step 4: Simplify: \[ \frac{74}{30} = \frac{37}{15} = 2 \frac{7}{15} \] Answer: \(2 \frac{7}{15}\)

iii. \(12 – 6\frac{5}{8}\)

Step 1: Convert mixed number to improper fraction. \[ 6\frac{5}{8} = \frac{53}{8},\quad 12 = \frac{96}{8} \] Step 2: Subtract: \[ \frac{96}{8} – \frac{53}{8} = \frac{43}{8} = 5 \frac{3}{8} \] Answer: \(5 \frac{3}{8}\)


Q9: Simplify: \(\frac{4}{9} – \frac{5}{12} + \frac{1}{4}\)

Step 1: Find the LCM of the denominators 9, 12, and 4.
LCM of 9, 12, and 4 = 36
Step 2: Convert all fractions to have a denominator of 36: \[ \frac{4}{9} = \frac{4 \times 4}{9 \times 4} = \frac{16}{36} \\ \frac{5}{12} = \frac{5 \times 3}{12 \times 3} = \frac{15}{36} \\ \frac{1}{4} = \frac{1 \times 9}{4 \times 9} = \frac{9}{36} \]Step 3: Now perform the operations: \[ \frac{16}{36} – \frac{15}{36} + \frac{9}{36} = \frac{(16 – 15 + 9)}{36} = \frac{10}{36} \]Step 4: Simplify the result: \[ \frac{10}{36} = \frac{5}{18} \]Answer: \(\frac{5}{18}\)


Q10: Simplify: \(6\frac{2}{3} + 4\frac{1}{6} – 2\frac{2}{9}\)

Step 1: Convert all mixed fractions into improper fractions: \[ 6\frac{2}{3} = \frac{20}{3} \\ 4\frac{1}{6} = \frac{25}{6} \\ 2\frac{2}{9} = \frac{20}{9} \]Step 2: Find LCM of denominators: 3, 6, and 9.
LCM = 18
Step 3: Convert each fraction to have denominator 18: \[ \frac{20}{3} = \frac{120}{18} \\ \frac{25}{6} = \frac{75}{18} \\ \frac{20}{9} = \frac{40}{18} \]Step 4: Now perform the operations: \[ \frac{120}{18} + \frac{75}{18} – \frac{40}{18} = \frac{(120 + 75 – 40)}{18} = \frac{155}{18} \]Step 5: Convert to mixed fraction: \[ \frac{155}{18} = 8\frac{11}{18} \]Answer: \(8\frac{11}{18}\)


Q11: Simplify: \(9 – 4\frac{1}{2} – 2\frac{1}{5}\)

Step 1: Convert mixed fractions into improper fractions: \[ 4\frac{1}{2} = \frac{9}{2} \\ 2\frac{1}{5} = \frac{11}{5} \] Step 2: Convert 9 into a fraction with LCM of 2 and 5 = 10. \[ 9 = \frac{90}{10},\quad \frac{9}{2} = \frac{45}{10},\quad \frac{11}{5} = \frac{22}{10} \]Step 3: Perform the subtraction: \[ \frac{90}{10} – \frac{45}{10} – \frac{22}{10} = \frac{(90 – 45 – 22)}{10} = \frac{23}{10} \]Step 4: Convert to mixed number: \[ \frac{23}{10} = 2\frac{3}{10} \]Answer: \(2\frac{3}{10}\)


Q12: Simplify: \(10\frac{3}{4} – 5\frac{1}{8} – 4\frac{5}{12}\)

Step 1: Convert all mixed numbers into improper fractions: \[ 10\frac{3}{4} = \frac{43}{4} \\ 5\frac{1}{8} = \frac{41}{8} \\ 4\frac{5}{12} = \frac{53}{12} \] Step 2: Find LCM of denominators 4, 8, and 12.
LCM (4, 8, 12) = 24
Convert all fractions to have denominator 24:\[ \frac{43}{4} = \frac{258}{24},\quad \frac{41}{8} = \frac{123}{24},\quad \frac{53}{12} = \frac{106}{24} \]Step 3: Perform the subtraction:\[ \frac{258}{24} – \frac{123}{24} – \frac{106}{24} = \frac{(258 – 123 – 106)}{24} = \frac{29}{24} \]Step 4: Convert to mixed number:\[ \frac{29}{24} = 1\frac{5}{24} \]Answer: \(1\frac{5}{24}\)


Q13: Simplify: \(6\frac{4}{5} – 3\frac{4}{15} + 4\frac{3}{10}\)

Step 1: Convert all mixed numbers into improper fractions: \[6\frac{4}{5} = \frac{34}{5} \\ 3\frac{4}{15} = \frac{49}{15} \\ 4\frac{3}{10} = \frac{43}{10} \]Step 2: Find LCM of denominators 5, 15, and 10.
LCM (5, 15, 10) = 30
Convert all fractions to have denominator 30:\[ \frac{34}{5} = \frac{204}{30},\quad \frac{49}{15} = \frac{98}{30},\quad \frac{43}{10} = \frac{129}{30} \]Step 3: Perform the operations:\[ \frac{204}{30} – \frac{98}{30} + \frac{129}{30} = \frac{(204 – 98 + 129)}{30} = \frac{235}{30} \]Step 4: Simplify the result:\[ \frac{235}{30} = 7\frac{25}{30} = 7\frac{5}{6} \]Answer: \(7\frac{5}{6}\)


Q14: Simplify: \(4\frac{5}{12}+3\frac{11}{18}-2\frac{7}{24}\)

Step 1: Convert mixed numbers into improper fractions: \[ 4\frac{5}{12} = \frac{53}{12} \\ 3\frac{11}{18} = \frac{65}{18} \\ 2\frac{7}{24} = \frac{55}{24} \]Step 2: Find LCM of 12, 18, and 24.
LCM (12, 18, 24) = 72
Convert each fraction to have denominator 72: \[ \frac{53}{12} = \frac{318}{72} \\ \frac{65}{18} = \frac{260}{72} \\ \frac{55}{24} = \frac{165}{72} \]Step 3: Add and subtract the fractions:\[ \frac{318}{72} + \frac{260}{72} – \frac{165}{72} = \frac{(318 + 260 – 165)}{72} = \frac{413}{72} \]Step 4: Convert to mixed fraction:\[ \frac{413}{72} = 5\frac{53}{72} \]Answer: \(5\frac{53}{72}\)


Q15: Subtract the sum of \(9\frac{3}{4}\) and \(3\frac{5}{6}\) from \(15\frac{7}{12}\).

Step 1: Convert all mixed numbers into improper fractions: \[ 9\frac{3}{4} = \frac{39}{4} \\ 3\frac{5}{6} = \frac{23}{6} \\ 15\frac{7}{12} = \frac{187}{12} \]Step 2: Find the sum of the first two fractions:
We find LCM of 4 and 6:
LCM (4, 6) = 12
Convert both fractions to have denominator 12: \[ \frac{39}{4} = \frac{117}{12} \\ \frac{23}{6} = \frac{46}{12} \\ \frac{117}{12} + \frac{46}{12} = \frac{163}{12} \]Step 3: Subtract this sum from \(\frac{187}{12}\):\[ \frac{187}{12} – \frac{163}{12} = \frac{24}{12} = 2 \]Answer: 2


Q16: Subtract the sum of \(2\frac{5}{12}\) and \(3\frac{3}{4}\) from the sum of \(7\frac{1}{3}\) and \(5\frac{1}{6}\).

Step 1: Convert all mixed fractions to improper fractions. \[ 2\frac{5}{12} = \frac{29}{12} \\ 3\frac{3}{4} = \frac{15}{4} \\ 7\frac{1}{3} = \frac{22}{3} \\ 5\frac{1}{6} = \frac{31}{6} \] Step 2: Find the sum of \(2\frac{5}{12}\) and \(3\frac{3}{4}\)
We need LCM of 12 and 4 = 12
\[ \frac{15}{4} = \frac{45}{12} \\ \frac{29}{12} + \frac{45}{12} = \frac{74}{12} \]Step 3: Find the sum of \(7\frac{1}{3}\) and \(5\frac{1}{6}\)
LCM of 3 and 6 = 6 \[ \frac{22}{3} = \frac{44}{6} \\ \frac{44}{6} + \frac{31}{6} = \frac{75}{6} \]Step 4: Subtract the two results:
First, convert both to a common denominator. LCM of 6 and 12 is 12.\[ \frac{75}{6} = \frac{150}{12} \\ \frac{74}{12} \text{ remains the same} \\ \frac{150}{12} – \frac{74}{12} = \frac{76}{12} \]Reduce the fraction:\[ \frac{76}{12} = \frac{19}{3} = 6\frac{1}{3} \]Answer: \(6\frac{1}{3}\)


Q17: What should be added to \(9\frac{4}{7}\) to get 16?

Step 1: Convert the mixed fraction \(9\frac{4}{7}\) to an improper fraction:\[ 9\frac{4}{7} = \frac{(9 \times 7) + 4}{7} = \frac{63 + 4}{7} = \frac{67}{7} \]Step 2: Let the number to be added be \(x\). According to the problem:\[ 9\frac{4}{7} + x = 16 \]Convert 16 to a fraction with denominator 7 for easier calculation:\[ 16 = \frac{16 \times 7}{7} = \frac{112}{7} \]Step 3: Substitute values:\[ \frac{67}{7} + x = \frac{112}{7} \]Step 4: Solve for \(x\):\[ x = \frac{112}{7} – \frac{67}{7} = \frac{112 – 67}{7} = \frac{45}{7} \]Convert \(\frac{45}{7}\) back to mixed fraction:\[ \frac{45}{7} = 6\frac{3}{7} \]Answer: \(6\frac{3}{7}\)


Q18: What must be subtracted from \(9\frac{1}{6}\) to get \(6\frac{1}{9}\)?

Step 1: Convert the mixed fractions into improper fractions:\[ 9\frac{1}{6} = \frac{(9 \times 6) + 1}{6} = \frac{54 + 1}{6} = \frac{55}{6} \\ 6\frac{1}{9} = \frac{(6 \times 9) + 1}{9} = \frac{54 + 1}{9} = \frac{55}{9} \]Step 2: Let the number to be subtracted be \(x\). According to the problem:\[ 9\frac{1}{6} – x = 6\frac{1}{9} \]Substitute the improper fractions:\[ \frac{55}{6} – x = \frac{55}{9} \]Step 3: Solve for \(x\):\[ x = \frac{55}{6} – \frac{55}{9} \]To subtract, find the common denominator \(= 18\):\[ \frac{55}{6} = \frac{55 \times 3}{18} = \frac{165}{18} \\ \frac{55}{9} = \frac{55 \times 2}{18} = \frac{110}{18} \\ x = \frac{165}{18} – \frac{110}{18} = \frac{55}{18} \]Step 4: Convert \(\frac{55}{18}\) to a mixed fraction:\[ \frac{55}{18} = 3\frac{1}{18} \]Answer: \(3\frac{1}{18}\)


Q19: Of \(\frac{17}{20}\) and \(\frac{21}{25}\), which is greater and by how much?

Step 1: Find a common denominator to compare the two fractions.The denominators are 20 and 25. The Least Common Denominator (LCD) is:
LCD = LCM (20, 25) = 100
Step 2: Convert both fractions to equivalent fractions with denominator 100:\[ \frac{17}{20} = \frac{17 \times 5}{20 \times 5} = \frac{85}{100} \\ \frac{21}{25} = \frac{21 \times 4}{25 \times 4} = \frac{84}{100} \]Step 3: Compare the numerators:\[ 85 > 84 \]So, \(\frac{17}{20}\) is greater.
Step 4: Find how much greater:\[ \frac{17}{20} – \frac{21}{25} = \frac{85}{100} – \frac{84}{100} = \frac{1}{100} \]Answer: \(\frac{17}{20}\) is greater than \(\frac{21}{25}\) by \(\frac{1}{100}\).


Q20: The sum of two fractions is \(14\frac{5}{12}\). If one of them is \(7\frac{2}{3}\), find the other.

Step 1: Convert the mixed fractions to improper fractions.\[ 14\frac{5}{12} = \frac{14 \times 12 + 5}{12} = \frac{168 + 5}{12} = \frac{173}{12} \\ 7\frac{2}{3} = \frac{7 \times 3 + 2}{3} = \frac{21 + 2}{3} = \frac{23}{3} \]Step 2: Let the other fraction be \(x\). According to the problem:\[ x + \frac{23}{3} = \frac{173}{12} \]Step 3: Subtract \(\frac{23}{3}\) from both sides to find \(x\):\[ x = \frac{173}{12} – \frac{23}{3} \]Step 4: Find a common denominator for subtraction:\[ \text{LCD of } 12 \text{ and } 3 = 12 \]Convert \(\frac{23}{3}\) to denominator 12:\[ \frac{23}{3} = \frac{23 \times 4}{3 \times 4} = \frac{92}{12} \]Step 5: Subtract the fractions:\[ x = \frac{173}{12} – \frac{92}{12} = \frac{173 – 92}{12} = \frac{81}{12} \]Step 6: Simplify the fraction \(\frac{81}{12}\):
Divide numerator and denominator by 3:\[ \frac{81}{12} = \frac{27}{4} \]Convert improper fraction to mixed fraction:\[ \frac{27}{4} = 6\frac{3}{4} \]Answer: The other fraction is \(6\frac{3}{4}\).


Q21: From a piece of wire \(12\frac{3}{4}\) m long, a small piece of length \(3\frac{5}{6}\) has been cut off. What is the length of the remaining piece?

Step 1: Convert the mixed fractions to improper fractions.\[ 12\frac{3}{4} = \frac{12 \times 4 + 3}{4} = \frac{48 + 3}{4} = \frac{51}{4} \\ 3\frac{5}{6} = \frac{3 \times 6 + 5}{6} = \frac{18 + 5}{6} = \frac{23}{6} \]Step 2: Subtract the cut piece from the total length:\[ \text{Remaining length} = \frac{51}{4} – \frac{23}{6} \]Step 3: Find the least common denominator (LCD) of 4 and 6, which is 12.
Convert the fractions:\[ \frac{51}{4} = \frac{51 \times 3}{4 \times 3} = \frac{153}{12} \\ \frac{23}{6} = \frac{23 \times 2}{6 \times 2} = \frac{46}{12} \]Step 4: Subtract the fractions:\[ \frac{153}{12} – \frac{46}{12} = \frac{153 – 46}{12} = \frac{107}{12} \]Step 5: Convert \(\frac{107}{12}\) to a mixed fraction:\[ \frac{107}{12} = 8 \frac{11}{12} \]Answer: The length of the remaining piece of wire is \(8\frac{11}{12}\) meters.


Q22: Three boxes weigh \(9\frac{1}{2}\) kg, \(14\frac{1}{5}\) kg and \(18\frac{3}{4}\) kg respectively. A porter carriers all the three boxes. What is the total weight carried by the porter?

Step 1: Convert the mixed fractions to improper fractions.\[ 9\frac{1}{2} = \frac{9 \times 2 + 1}{2} = \frac{18 + 1}{2} = \frac{19}{2} \\ 14\frac{1}{5} = \frac{14 \times 5 + 1}{5} = \frac{70 + 1}{5} = \frac{71}{5} \\ 18\frac{3}{4} = \frac{18 \times 4 + 3}{4} = \frac{72 + 3}{4} = \frac{75}{4} \]Step 2: Find the least common denominator (LCD) of 2, 5, and 4.
– Prime factors:
– 2 = 2
– 5 = 5
– 4 = \(2^2\)
LCD = \(2^2 \times 5 = 4 \times 5 = 20\)
Step 3: Convert all fractions to denominator 20.\[ \frac{19}{2} = \frac{19 \times 10}{2 \times 10} = \frac{190}{20} \\ \frac{71}{5} = \frac{71 \times 4}{5 \times 4} = \frac{284}{20} \\ \frac{75}{4} = \frac{75 \times 5}{4 \times 5} = \frac{375}{20} \\ \]Step 4: Add the fractions.\[ \frac{190}{20} + \frac{284}{20} + \frac{375}{20} = \frac{190 + 284 + 375}{20} = \frac{849}{20} \]Step 5: Convert \(\frac{849}{20}\) to a mixed fraction.\[ \frac{849}{20} = 42 \frac{9}{20} \]Answer: The total weight carried by the porter is \(42\frac{9}{20}\) kilograms.


Q23: On one day, a labourer earned ₹125. Out of this money, he spent ₹\(68\frac{1}{2}\) on food, ₹\(20\frac{3}{4}\) on tea and ₹\(16\frac{2}{5}\) on other eatables. How much does he save on that day?

Step 1: Convert the mixed fractions to improper fractions.\[ 68\frac{1}{2} = \frac{68 \times 2 + 1}{2} = \frac{136 + 1}{2} = \frac{137}{2} \\ 20\frac{3}{4} = \frac{20 \times 4 + 3}{4} = \frac{80 + 3}{4} = \frac{83}{4} \\ 16\frac{2}{5} = \frac{16 \times 5 + 2}{5} = \frac{80 + 2}{5} = \frac{82}{5} \]Step 2: Find the least common denominator (LCD) of 2, 4, and 5.
– Prime factors:
– 2 = 2
– 4 = \(2^2\)
– 5 = 5
LCD = \(2^2 \times 5 = 4 \times 5 = 20\)
Step 3: Convert all fractions to denominator 20.\[ \frac{137}{2} = \frac{137 \times 10}{2 \times 10} = \frac{1370}{20} \\ \frac{83}{4} = \frac{83 \times 5}{4 \times 5} = \frac{415}{20} \\ \frac{82}{5} = \frac{82 \times 4}{5 \times 4} = \frac{328}{20} \]Step 4: Add the expenditures.\[ \frac{1370}{20} + \frac{415}{20} + \frac{328}{20} = \frac{1370 + 415 + 328}{20} = \frac{2113}{20} \]Step 5: Convert ₹125 into fraction with denominator 20.\[ 125 = \frac{125 \times 20}{20} = \frac{2500}{20} \]Step 6: Calculate savings.\[ \text{Savings} = \frac{2500}{20} – \frac{2113}{20} = \frac{2500 – 2113}{20} = \frac{387}{20} \]Step 7: Convert \(\frac{387}{20}\) into mixed fraction.\[ \frac{387}{20} = 19 \frac{7}{20} \]Answer: The labourer saves ₹\(19\frac{7}{20}\) on that day.


previous
next

Share the Post:

Leave a Comment

Your email address will not be published. Required fields are marked *

Related Posts​

  • Type casting in Java
    The process of converting the value of one data type to another data type is known as typecasting.
  • Identities
    Step by Step solutions of Test Yourself Concise Mathematics ICSE Class-8 Maths chapter 12- Identities by Selina is provided.

Join Our Newsletter

Name
Email
The form has been submitted successfully!
There has been some error while submitting the form. Please verify all form fields again.

Scroll to Top