Fractions

Fractions

Step by Step solutions of RS Aggarwal ICSE Class-6 Maths chapter 4- Fractions by Goyal Brothers Prakashan is provided.

Table of Contents

Exercise: 4-C

Q1: Point out the proper and improper fractions from the following:

Step 1: Understand the definitions:
– A proper fraction is a fraction where the numerator is less than the denominator.
– An improper fraction is a fraction where the numerator is greater than or equal to the denominator.

i. \(\frac{7}{9}\)

Since \(7 < 9\), it is a proper fraction.

ii. \(\frac{16}{11}\)

Since \(16 > 11\), it is an improper fraction.

iii. \(\frac{18}{25}\)

Since \(18 < 25\), it is a proper fraction.

iv. \(\frac{10}{10}\)

Since numerator = denominator, it is an improper fraction.

v. \(\frac{37}{23}\)

Since \(37 > 23\), it is an improper fraction.

vi. \(\frac{21}{8}\)

Since \(21 > 8\), it is an improper fraction.

vii. \(\frac{56}{57}\)

Since \(56 < 57\), it is a proper fraction.

viii. \(\frac{137}{105}\)

Since \(137 > 105\), it is an improper fraction.

ix. \(\frac{2}{1}\)

Since \(2 > 1\), it is an improper fraction.

x. \(\frac{100}{101}\)

Since \(100 < 101\), it is a proper fraction.

Answer:
Proper fractions: \(\frac{7}{9}, \frac{18}{25}, \frac{56}{57}, \frac{100}{101}\)Improper fractions: \(\frac{16}{11}, \frac{10}{10}, \frac{37}{23}, \frac{21}{8}, \frac{137}{105}, \frac{2}{1}\)


Q2: Convert each of the following mixed fractions into an improper fraction:

Step 1: Recall the formula to convert mixed fraction to improper fraction: \[ \text{Improper fraction} = \frac{(\text{Whole number} \times \text{Denominator}) + \text{Numerator}}{\text{Denominator}} \]

i. \(8\frac{3}{4}\)

\[ = \frac{(8 \times 4) + 3}{4} = \frac{32 + 3}{4} = \frac{35}{4} \] Answer: \(\frac{35}{4}\)

ii. \(5\frac{11}{13}\)

\[ = \frac{(5 \times 13) + 11}{13} = \frac{65 + 11}{13} = \frac{76}{13} \] Answer: \(\frac{76}{13}\)

iii. \(10\frac{7}{9}\)

\[ = \frac{(10 \times 9) + 7}{9} = \frac{90 + 7}{9} = \frac{97}{9} \] Answer: \(\frac{97}{9}\)

iv. \(33\frac{1}{3}\)

\[ = \frac{(33 \times 3) + 1}{3} = \frac{99 + 1}{3} = \frac{100}{3} \] Answer: \(\frac{100}{3}\)

v. \(9\frac{7}{16}\)

\[ = \frac{(9 \times 16) + 7}{16} = \frac{144 + 7}{16} = \frac{151}{16} \] Answer: \(\frac{151}{16}\)


Q3: Convert each of the following improper fractions into a mixed fraction:

Step 1: Recall the formula to convert improper fraction to mixed fraction: \[ \text{Mixed fraction} = \text{Whole number} + \frac{\text{Remainder}}{\text{Denominator}} \] where Whole number = Quotient of numerator ÷ denominator, and Remainder = numerator mod denominator.

i. \(\frac{31}{5}\)

Divide 31 by 5: \[ 31 \div 5 = 6 \text{ quotient}, \quad 31 – (6 \times 5) = 1 \text{ remainder} \] So, \[ \frac{31}{5} = 6\frac{1}{5} \] Answer: \(6\frac{1}{5}\)

ii. \(\frac{80}{7}\)

Divide 80 by 7: \[ 80 \div 7 = 11 \text{ quotient}, \quad 80 – (11 \times 7) = 3 \text{ remainder} \] So, \[ \frac{80}{7} = 11\frac{3}{7} \] Answer: \(11\frac{3}{7}\)

iii. \(\frac{107}{3}\)

Divide 107 by 3: \[ 107 \div 3 = 35 \text{ quotient}, \quad 107 – (35 \times 3) = 2 \text{ remainder} \] So, \[ \frac{107}{3} = 35\frac{2}{3} \] Answer: \(35\frac{2}{3}\)

iv. \(\frac{115}{13}\)

Divide 115 by 13: \[ 115 \div 13 = 8 \text{ quotient}, \quad 115 – (8 \times 13) = 11 \text{ remainder} \] So, \[ \frac{115}{13} = 8\frac{11}{13} \] Answer: \(8\frac{11}{13}\)

v. \(\frac{200}{9}\)

Divide 200 by 9: \[ 200 \div 9 = 22 \text{ quotient}, \quad 200 – (22 \times 9) = 2 \text{ remainder} \] So, \[ \frac{200}{9} = 22\frac{2}{9} \] Answer: \(22\frac{2}{9}\)


Q4: Convert each of the following sets of unlike fractions into that fractions:

Step 1: To convert unlike fractions to like fractions, find the LCM (Least Common Multiple) of their denominators.
Step 2: Convert each fraction to an equivalent one with the LCM as the common denominator.

i. \(\frac{4}{5}, \frac{7}{10}, \frac{11}{15}, \frac{13}{20}\)

LCM of 5, 10, 15, 20 = 60 \[ \frac{4}{5} = \frac{4 \times 12}{5 \times 12} = \frac{48}{60}\\ \frac{7}{10} = \frac{7 \times 6}{10 \times 6} = \frac{42}{60}\\ \frac{11}{15} = \frac{11 \times 4}{15 \times 4} = \frac{44}{60}\\ \frac{13}{20} = \frac{13 \times 3}{20 \times 3} = \frac{39}{60} \] Answer: \(\frac{48}{60}, \frac{42}{60}, \frac{44}{60}, \frac{39}{60}\)

ii. \(\frac{2}{3}, \frac{1}{4}, \frac{5}{6}, \frac{7}{8}, \frac{11}{12}\)

LCM of 3, 4, 6, 8, 12 = 24 \[ \frac{2}{3} = \frac{16}{24}\\ \frac{1}{4} = \frac{6}{24}\\ \frac{5}{6} = \frac{20}{24}\\ \frac{7}{8} = \frac{21}{24}\\ \frac{11}{12} = \frac{22}{24} \] Answer: \(\frac{16}{24}, \frac{6}{24}, \frac{20}{24}, \frac{21}{24}, \frac{22}{24}\)

iii. \(\frac{1}{3}, \frac{3}{4}, \frac{5}{12}, \frac{9}{16}, \frac{17}{24}\)

LCM of 3, 4, 12, 16, 24 = 48 \[ \frac{1}{3} = \frac{16}{48}\\ \frac{3}{4} = \frac{36}{48}\\ \frac{5}{12} = \frac{20}{48}\\ \frac{9}{16} = \frac{27}{48}\\ \frac{17}{24} = \frac{34}{48} \] Answer: \(\frac{16}{48}, \frac{36}{48}, \frac{20}{48}, \frac{27}{48}, \frac{34}{48}\)

iv. \(\frac{2}{3}, \frac{1}{6}, \frac{5}{9}, \frac{7}{12}, \frac{13}{18}\)

LCM of 3, 6, 9, 12, 18 = 36 \[ \frac{2}{3} = \frac{24}{36}\\ \frac{1}{6} = \frac{6}{36}\\ \frac{5}{9} = \frac{20}{36}\\ \frac{7}{12} = \frac{21}{36}\\ \frac{13}{18} = \frac{26}{36} \] Answer: \(\frac{24}{36}, \frac{6}{36}, \frac{20}{36}, \frac{21}{36}, \frac{26}{36}\)

v. \(\frac{1}{2}, \frac{4}{7}, \frac{9}{14}, \frac{11}{21}, \frac{37}{42}\)

LCM of 2, 7, 14, 21, 42 = 42 \[ \frac{1}{2} = \frac{21}{42}\\ \frac{4}{7} = \frac{24}{42}\\ \frac{9}{14} = \frac{27}{42}\\ \frac{11}{21} = \frac{22}{42}\\ \frac{37}{42} = \frac{37}{42} \] Answer: \(\frac{21}{42}, \frac{24}{42}, \frac{27}{42}, \frac{22}{42}, \frac{37}{42}\)

vi. \(\frac{2}{7}, \frac{5}{8}, \frac{11}{14}, \frac{9}{16}, \frac{3}{4}\)

LCM of 7, 8, 14, 16, 4 = 112 \[ \frac{2}{7} = \frac{32}{112},\\ \frac{5}{8} = \frac{70}{112},\\ \frac{11}{14} = \frac{88}{112}\\ \frac{9}{16} = \frac{63}{112}\\ \frac{3}{4} = \frac{84}{112} \] Answer: \(\frac{32}{112}, \frac{70}{112}, \frac{88}{112}, \frac{63}{112}, \frac{84}{112}\)


Q5: Fill in the placeholders with > or < :

i. \(\frac{7}{9}\) ___ \(\frac{5}{9}\)

Step 1: Same denominator. Compare numerators.
7 > 5
Answer: \(\frac{7}{9} \gt \frac{5}{9}\)

ii. \(\frac{9}{13}\) ___ \(\frac{11}{13}\)

Step 1: Same denominator. Compare numerators.
9 < 11
Answer: \(\frac{9}{13} \lt \frac{11}{13}\)

iii. \(\frac{3}{5}\) ___ \(\frac{3}{4}\)

Step 1: Convert to same denominator (LCM = 20):
\(\frac{3}{5} = \frac{12}{20}, \quad \frac{3}{4} = \frac{15}{20}\)
12 < 15
Answer: \(\frac{3}{5} \lt \frac{3}{4}\)

iv. \(\frac{7}{9}\) ___ \(\frac{7}{11}\)

Step 1: Convert to same denominator (LCM = 99):
\(\frac{7}{9} = \frac{77}{99}, \quad \frac{7}{11} = \frac{63}{99}\)
77 > 63
Answer: \(\frac{7}{9} \gt \frac{7}{11}\)

v. \(\frac{5}{8}\) ___ \(\frac{5}{6}\)

Step 1: LCM = 24:
\(\frac{5}{8} = \frac{15}{24}, \quad \frac{5}{6} = \frac{20}{24}\)
15 < 20
Answer: \(\frac{5}{8} \lt \frac{5}{6}\)

vi. \(\frac{7}{9}\) ___ \(\frac{6}{11}\)

Step 1: LCM = 99:
\(\frac{7}{9} = \frac{77}{99}, \quad \frac{6}{11} = \frac{54}{99}\)
77 > 54
Answer: \(\frac{7}{9} \gt \frac{6}{11}\)

vii. \(\frac{6}{5}\) ___ \(\frac{5}{4}\)

Step 1: Convert to same denominator (LCM = 20):
\(\frac{6}{5} = \frac{24}{20}, \quad \frac{5}{4} = \frac{25}{20}\)
24 < 25
Answer: \(\frac{6}{5} \lt \frac{5}{4}\)

viii. \(\frac{7}{11}\) ___ \(\frac{8}{13}\)

Step 1: Cross-multiply: \(7 \times 13 = 91, \ 8 \times 11 = 88\)
91 > 88
Answer: \(\frac{7}{11} \gt \frac{8}{13}\)

ix. \(\frac{10}{13}\) ___ \(\frac{13}{16}\)

Step 1: Cross-multiply: \(10 \times 16 = 160, \ 13 \times 13 = 169\)
160 < 169
Answer: \(\frac{10}{13} \lt \frac{13}{16}\)

x. \(\frac{2}{9}\) ___ \(\frac{3}{14}\)

Step 1: Cross-multiply: \(2 \times 14 = 28, \ 3 \times 9 = 27\)
28 > 27
Answer: \(\frac{2}{9} \gt \frac{3}{14}\)

xi. \(\frac{7}{12}\) ___ \(\frac{5}{9}\)

Step 1: Cross-multiply: \(7 \times 9 = 63, \ 5 \times 12 = 60\)
63 > 60
Answer: \(\frac{7}{12} \gt \frac{5}{9}\)

\(\frac{15}{19}\) ___ \(\frac{3}{4}\)

Step 1: Cross-multiply: \(15 \times 4 = 60, \ 3 \times 19 = 57\)
60 > 57
Answer: \(\frac{15}{19} \gt \frac{3}{4}\)


Q6: Arrange the following fractions in ascending order:

i. \(\frac{3}{11},\frac{9}{11},\frac{4}{11},\frac{5}{11},\frac{1}{11}\)

Step: All fractions have the same denominator (11). When denominator is same, compare **numerators**:
⇒ \(1 < 3 < 4 < 5 < 9\) So, order of fractions:
Answer: \(\frac{1}{11},\frac{3}{11},\frac{4}{11},\frac{5}{11},\frac{9}{11}\)

ii. \(\frac{2}{13},\frac{2}{9},\frac{2}{15},\frac{2}{7},\frac{2}{5}\)

Step: All fractions have same numerator (2). When numerator is same, **larger the denominator, smaller the fraction**:
⇒ \(15 > 13 > 9 > 7 > 5\)
So the order is:
Answer: \(\frac{2}{15},\frac{2}{13},\frac{2}{9},\frac{2}{7},\frac{2}{5}\)

iii. \(\frac{2}{3},\frac{5}{6},\frac{7}{9},\frac{11}{12},\frac{13}{18}\)

Step: Denominators are different, numerators are different — make denominators same (LCM of 3, 6, 9, 12, 18 = 36)
Convert to like denominators:

  • \(\frac{2}{3} = \frac{24}{36}\)
  • \(\frac{5}{6} = \frac{30}{36}\)
  • \(\frac{7}{9} = \frac{28}{36}\)
  • \(\frac{11}{12} = \frac{33}{36}\)
  • \(\frac{13}{18} = \frac{26}{36}\)

⇒ \(24 < 26 < 28 < 30 < 33\)
Answer: \(\frac{2}{3},\frac{13}{18},\frac{7}{9},\frac{5}{6},\frac{11}{12}\)

iv. \(\frac{2}{3},\frac{1}{4},\frac{5}{6},\frac{3}{8},\frac{7}{12}\)

Step: Different numerators and denominators — make denominators same (LCM of 3, 4, 6, 8, 12 = 24)
Convert to like denominators:

  • \(\frac{2}{3} = \frac{16}{24}\)
  • \(\frac{1}{4} = \frac{6}{24}\)
  • \(\frac{5}{6} = \frac{20}{24}\)
  • \(\frac{3}{8} = \frac{9}{24}\)
  • \(\frac{7}{12} = \frac{14}{24}\)

⇒ \(6 < 9 < 14 < 16 < 20\)
Answer: \(\frac{1}{4},\frac{3}{8},\frac{7}{12},\frac{2}{3},\frac{5}{6}\)


Q7: Arrange the following fractions in descending order:

i. \(\frac{5}{12},\ \frac{1}{12},\ \frac{7}{12},\ \frac{11}{12},\ \frac{9}{12}\)

Step 1: All fractions have the same denominator (12).
Step 2: When denominators are same, compare the numerators.
Numerators are: 5, 1, 7, 11, 9
Step 3: Arrange numerators in descending order: 11, 9, 7, 5, 1
Answer: \(\frac{11}{12} > \frac{9}{12} > \frac{7}{12} > \frac{5}{12} > \frac{1}{12}\)

ii. \(\frac{4}{7},\ \frac{4}{3},\ \frac{4}{9},\ \frac{4}{5},\ \frac{4}{11}\)

Step 1: All fractions have the same numerator (4).
Step 2: When numerators are same, the fraction with the smallest denominator is the greatest.
Denominators are: 7, 3, 9, 5, 11
Order of denominators in ascending: 3, 5, 7, 9, 11
Answer: \(\frac{4}{3} > \frac{4}{5} > \frac{4}{7} > \frac{4}{9} > \frac{4}{11}\)

iii. \(\frac{2}{3},\ \frac{5}{6},\ \frac{7}{9},\ \frac{3}{4},\ \frac{1}{2}\)

Step 1: Convert all fractions to have a common denominator.
LCM of 3, 6, 9, 4, 2 = 36 \[ \frac{2}{3} = \frac{24}{36},\quad \frac{5}{6} = \frac{30}{36},\quad \frac{7}{9} = \frac{28}{36},\quad \frac{3}{4} = \frac{27}{36},\quad \frac{1}{2} = \frac{18}{36} \] Step 2: Arrange: 30, 28, 27, 24, 18
Answer: \(\frac{5}{6} > \frac{7}{9} > \frac{3}{4} > \frac{2}{3} > \frac{1}{2}\)

iv. \(\frac{2}{3},\ \frac{3}{5},\ \frac{7}{10},\ \frac{8}{15},\ \frac{11}{20}\)

Step 1: Convert all fractions to have a common denominator.
LCM of 3, 5, 10, 15, 20 = 60 \[ \frac{2}{3} = \frac{40}{60},\quad \frac{3}{5} = \frac{36}{60},\quad \frac{7}{10} = \frac{42}{60},\quad \frac{8}{15} = \frac{32}{60},\quad \frac{11}{20} = \frac{33}{60} \] Step 2: Arrange: 42, 40, 36, 33, 32
Answer: \(\frac{7}{10} > \frac{2}{3} > \frac{3}{5} > \frac{11}{20} > \frac{8}{15}\)

v. \(\frac{17}{32},\ \frac{7}{12},\ \frac{19}{48},\ \frac{13}{24},\ \frac{9}{16}\)

Step 1: Convert all fractions to have a common denominator.
LCM of 32, 12, 48, 24, 16 = 96 \[ \frac{17}{32} = \frac{51}{96},\quad \frac{7}{12} = \frac{56}{96},\quad \frac{19}{48} = \frac{38}{96},\quad \frac{13}{24} = \frac{52}{96},\quad \frac{9}{16} = \frac{54}{96} \] Step 2: Arrange: 56, 54, 52, 51, 38
Answer: \(\frac{7}{12} > \frac{9}{16} > \frac{13}{24} > \frac{17}{32} > \frac{19}{48}\)

vi. \(\frac{5}{6},\ \frac{7}{9},\ \frac{17}{24},\ \frac{3}{4},\ \frac{23}{36}\)

Step 1: Convert all fractions to a common denominator.
LCM of 6, 9, 24, 4, 36 = 72 \[ \frac{5}{6} = \frac{60}{72},\quad \frac{7}{9} = \frac{56}{72},\quad \frac{17}{24} = \frac{51}{72},\quad \frac{3}{4} = \frac{54}{72},\quad \frac{23}{36} = \frac{46}{72} \] Step 2: Arrange: 60, 56, 54, 51, 46
Answer: \(\frac{5}{6} > \frac{7}{9} > \frac{3}{4} > \frac{17}{24} > \frac{23}{36}\)


previous
next

Share the Post:

Leave a Comment

Your email address will not be published. Required fields are marked *

Related Posts​

  • Type casting in Java
    The process of converting the value of one data type to another data type is known as typecasting.
  • Identities
    Step by Step solutions of Test Yourself Concise Mathematics ICSE Class-8 Maths chapter 12- Identities by Selina is provided.

Join Our Newsletter

Name
Email
The form has been submitted successfully!
There has been some error while submitting the form. Please verify all form fields again.

Scroll to Top