Algebraic Identities

algebraic identities class 8 rs aggarwal

Step by Step solutions of RS Aggarwal ICSE Class-8 Maths chapter 13- Algebraic Identities by Goyal Brothers Prakashan is provided

Table of Contents

Exercise: 13-D

Multiple Choice Questions

Q1: If \(\left(x+\frac{1}{x}\right)=3\), then \(\left(x^2+\frac{1}{x^2}\right)\) is equal to:

Step 1: Recall the identity: \[ \left(x+\frac{1}{x}\right)^2 = x^2 + \frac{1}{x^2} + 2 \]Step 2: Rearrange to find \(x^2 + \frac{1}{x^2}\): \[ x^2 + \frac{1}{x^2} = \left(x+\frac{1}{x}\right)^2 – 2 \]Step 3: Substitute the given value \(x+\frac{1}{x}=3\): \[ x^2 + \frac{1}{x^2} = 3^2 – 2 \\ x^2 + \frac{1}{x^2} = 9 – 2 \\ x^2 + \frac{1}{x^2} = 7 \]Answer: c. 7


Q2: If \(\left(x+\frac{1}{x}\right)=4\), then \(\left(x^4+\frac{1}{x^4}\right)\) is equal to:

Step 1: Recall the identities: \[ \left(x+\frac{1}{x}\right)^2 = x^2 + \frac{1}{x^2} + 2 \\ \left(x^2+\frac{1}{x^2}\right)^2 = x^4 + \frac{1}{x^4} + 2 \]Step 2: Find \(x^2 + \frac{1}{x^2}\) first: \[ x^2 + \frac{1}{x^2} = \left(x+\frac{1}{x}\right)^2 – 2 \\ x^2 + \frac{1}{x^2} = 4^2 – 2 \\ x^2 + \frac{1}{x^2} = 16 – 2 = 14 \]Step 3: Now, find \(x^4 + \frac{1}{x^4}\): \[ x^4 + \frac{1}{x^4} = \left(x^2 + \frac{1}{x^2}\right)^2 – 2 \\ x^4 + \frac{1}{x^4} = 14^2 – 2 \\ x^4 + \frac{1}{x^4} = 196 – 2 = 194 \]Answer: c. 194


Q3: If \(\left(x^2+\frac{1}{x^2}\right)=102\), then the value of \(\left(x-\frac{1}{x}\right)\) is:

Step 1: Recall the identity: \[ \left(x-\frac{1}{x}\right)^2 = x^2 – \frac{1}{x^2} + 2 \]Step 2: Substitute \(x^2 + \frac{1}{x^2} = 102\): \[ \left(x-\frac{1}{x}\right)^2 = 102 – 2 \\ \left(x-\frac{1}{x}\right)^2 = 100 \]Step 3: Take square root: \[ x – \frac{1}{x} = \sqrt{100} = 10 \]Answer: b. 10


Q4: If \(x+y=7\) and \(xy=12\), the value of \(\left(x^2+y^2\right)\) is:

Step 1: Recall the identity: \[ (x+y)^2 = x^2 + y^2 + 2xy \]Step 2: Rearrange to find \(x^2 + y^2\): \[ x^2 + y^2 = (x+y)^2 – 2xy \]Step 3: Substitute the given values \(x+y = 7\) and \(xy = 12\): \[ x^2 + y^2 = 7^2 – 2(12) \\ x^2 + y^2 = 49 – 24 \\ x^2 + y^2 = 25 \]Answer: a. 25


Q5: \(107\times93=?\)

Using the identity \((a+b)(a-b) = a^2 – b^2\)
Step 1: Identify the numbers around a convenient base (here 100): \[ 107 = 100 + 7, \quad 93 = 100 – 7 \]Step 2: Apply the identity \((a+b)(a-b) = a^2 – b^2\): \[ 107 \times 93 = (100 + 7)(100 – 7) = 100^2 – 7^2 \]Step 3: Calculate the squares: \[ 100^2 – 7^2 = 10000 – 49 \]Step 4: Subtract: \[ 10000 – 49 = 9951 \]Answer: b. 9951


Q6: \(\left(370\right)^2-\left(369\right)^2=?\)

Using the identity \((a^2 – b^2) = (a-b)(a+b)\)
Step 1: Identify \(a\) and \(b\): \[ a = 370, \quad b = 369 \]Step 2: Apply the identity: \[ 370^2 – 369^2 = (370 – 369)(370 + 369) \]Step 3: Calculate each term: \[ 370 – 369 = 1 \\ 370 + 369 = 739 \]Step 4: Multiply: \[ (370^2 – 369^2) = 1 \times 739 = 739 \]Answer: c. 739


Q7: If \(\left(a-b\right)=7\) and \(ab=9\), then \((a^2+b^2=?\)

Step 1: Recall the identity: \[ (a-b)^2 = a^2 + b^2 – 2ab \]Step 2: Rearrange to find \(a^2 + b^2\): \[ a^2 + b^2 = (a-b)^2 + 2ab \]Step 3: Substitute the given values \((a-b)=7\) and \(ab=9\): \[ a^2 + b^2 = 7^2 + 2(9) \\ a^2 + b^2 = 49 + 18 \\ a^2 + b^2 = 67 \]Answer: a. 67


Q8: What must be added to \(\left(4x^2+20x+16\right)\) so that it becomes a perfect square?

i. Using the identity \((a+b)^2 = a^2 + 2ab + b^2\)
Step 1: Compare the given expression with the identity: \[ 4x^2 + 20x + 16 \] Here, \(4x^2 = (2x)^2\) and \(20x = 2 \cdot 2x \cdot ?\) (we need \(b\))
Step 2: Let the perfect square be \((2x + b)^2 = (2x)^2 + 2\cdot2x\cdot b + b^2\)\[ 2 \cdot 2x \cdot b = 20x \Rightarrow 4b = 20 \Rightarrow b = 5 \]Step 3: Calculate \(b^2\): \[ b^2 = 5^2 = 25 \]Step 4: The expression currently has constant term 16. To make it a perfect square, we need \(b^2 = 25\).
Step 5: Therefore, the number to add: \[ 25 – 16 = 9 \]Answer: a. 9


Q9: If \(\left(x-\frac{1}{x}\right)=3\), then \(\left(x^2+\frac{1}{x^2}\right)\) is equal to

Step 1: Use the identity:
\((x – \frac{1}{x})^2 = x^2 – 2 + \frac{1}{x^2}\)
Step 2: Substitute the given value:
\((x – \frac{1}{x})^2 = 3^2 = 9\)
Step 3: Expand the identity:
\((x – \frac{1}{x})^2 = x^2 – 2 + \frac{1}{x^2} = 9\)
Step 4: Solve for \(x^2 + \frac{1}{x^2}\):
\(x^2 + \frac{1}{x^2} = 9 + 2 = 11\)
Answer: c. 11


Q10: Which of the following is not equal to \(\left(a^2+b^2\right)\)?

Step 1: Recall the identities:
\((a+b)^2 = a^2 + 2ab + b^2\)
\((a-b)^2 = a^2 – 2ab + b^2\)
Step 2: Check each option:
Option a: \((a+b)^2 – 2ab = a^2 + 2ab + b^2 – 2ab = a^2 + b^2\) ✅
Option b: \((a-b)^2 + 2ab = a^2 – 2ab + b^2 + 2ab = a^2 + b^2\) ✅
Option c: \(\frac{1}{2} \{(a+b)^2 – (a-b)^2\} = \frac{1}{2} \{(a^2 + 2ab + b^2) – (a^2 – 2ab + b^2)\} = \frac{1}{2} (4ab) = 2ab\) ❌
Option d: \(\frac{1}{2} \{(a+b)^2 + (a-b)^2\} = \frac{1}{2} \{(a^2 + 2ab + b^2) + (a^2 – 2ab + b^2)\} = \frac{1}{2} (2a^2 + 2b^2) = a^2 + b^2\) ✅
Answer: c. \(\frac{1}{2}\left\{{(a+b)}^2-\left(a-b\right)^2\right\}\)


Q11: \(\left(x+\frac{1}{x}\right)^2-\left(x-\frac{1}{x}\right)^2=?\)

Step 1: Recall the identities:
\((x+\frac{1}{x})^2 = x^2 + 2 + \frac{1}{x^2}\)
\((x-\frac{1}{x})^2 = x^2 – 2 + \frac{1}{x^2}\)
Step 2: Subtract the two expressions:
\((x+\frac{1}{x})^2 – (x-\frac{1}{x})^2 = (x^2 + 2 + \frac{1}{x^2}) – (x^2 – 2 + \frac{1}{x^2})\)
Step 3: Simplify:
\((x+\frac{1}{x})^2 – (x-\frac{1}{x})^2 = 2 + 2 = 4\)
Answer: b. 4


Q12: If \(\left(x+\frac{1}{x}\right)=\frac{17}{4}\), then the value of \(\left(x-\frac{1}{x}\right)\) is:

Step 1: Use the identity:
\((x+\frac{1}{x})^2 – (x-\frac{1}{x})^2 = 4\)
Step 2: Let \((x-\frac{1}{x}) = y\). Then:
\((x+\frac{1}{x})^2 – y^2 = 4\)
Step 3: Substitute \(x+\frac{1}{x} = \frac{17}{4}\):
\(\left(\frac{17}{4}\right)^2 – y^2 = 4\)
Step 4: Calculate \((\frac{17}{4})^2\):
\(\frac{289}{16} – y^2 = 4\)
Step 5: Convert 4 into 16ths:
\(\frac{289}{16} – y^2 = \frac{64}{16}\)
Step 6: Solve for \(y^2\):
\(y^2 = \frac{289}{16} – \frac{64}{16} = \frac{225}{16}\)
Step 7: Take square root:
\(y = \sqrt{\frac{225}{16}} = \frac{15}{4}\)
Answer: d. \(\frac{15}{4}\)


previous
next

Share the Post:

Leave a Comment

Your email address will not be published. Required fields are marked *

Related Posts​

  • Linear Inequations
    Step by Step solutions of Exercise- Competency Focused Questions of RS Aggarwal ICSE Class-8 Maths chapter 16- Linear Inequations by Goyal Brothers Prakashan is provided.
  • Linear Inequations
    Step by Step solutions of Exercise- Assertion-Reason Questions of RS Aggarwal ICSE Class-8 Maths chapter 16- Linear Inequations by Goyal Brothers Prakashan is provided.

Join Our Newsletter

Name
Email
The form has been submitted successfully!
There has been some error while submitting the form. Please verify all form fields again.

Scroll to Top