Algebraic Identities

algebraic identities class 8 rs aggarwal

Step by Step solutions of RS Aggarwal ICSE Class-8 Maths chapter 13- Algebraic Identities by Goyal Brothers Prakashan is provided

Table of Contents

Exercise: 13-C

Q1: Expand:

i.  \((x+3)^2\)

Step 1: Here, \(a = x, b = 3\).
Step 2: Apply identity:
\((x+3)^2 = x^2 + 2(x)(3) + 3^2\).
Step 3: Simplify:
\(= x^2 + 6x + 9\).
Answer: \(x^2 + 6x + 9\)

ii.  \((2a+7)^2\)

Step 1: Here, \(a = 2a, b = 7\).
Step 2: Apply identity:
\((2a+7)^2 = (2a)^2 + 2(2a)(7) + 7^2\).
Step 3: Simplify:
\(= 4a^2 + 28a + 49\).
Answer: \(4a^2 + 28a + 49\)

iii.  \((8+3p)^2\)

Step 1: Here, \(a = 8, b = 3p\).
Step 2: Apply identity:
\((8+3p)^2 = 8^2 + 2(8)(3p) + (3p)^2\).
Step 3: Simplify:
\(= 64 + 48p + 9p^2\).
Answer: \(9p^2 + 48p + 64\)

iv.  \((\sqrt3x+2)^2\)

Step 1: Here, \(a = \sqrt3x, b = 2\).
Step 2: Apply identity:
\((\sqrt3x+2)^2 = (\sqrt3x)^2 + 2(\sqrt3x)(2) + 2^2\).
Step 3: Simplify:
\(= 3x^2 + 4\sqrt3x + 4\).
Answer: \(3x^2 + 4\sqrt3x + 4\)

v.  \((4+\sqrt5y)^2\)

Step 1: Here, \(a = 4, b = \sqrt5y\).
Step 2: Apply identity:
\((4+\sqrt5y)^2 = 4^2 + 2(4)(\sqrt5y) + (\sqrt5y)^2\).
Step 3: Simplify:
\(= 16 + 8\sqrt5y + 5y^2\).
Answer: \(5y^2 + 8\sqrt5y + 16\)

vi.  \((6x+11y)^2\)

Step 1: Here, \(a = 6x, b = 11y\).
Step 2: Apply identity:
\((6x+11y)^2 = (6x)^2 + 2(6x)(11y) + (11y)^2\).
Step 3: Simplify:
\(= 36x^2 + 132xy + 121y^2\).
Answer: \(36x^2 + 132xy + 121y^2\)

vii.  \(\left(\frac{x}{2}+\frac{y}{3}\right)^2\)

Step 1: Here, \(a = \frac{x}{2}, b = \frac{y}{3}\).
Step 2: Apply identity:
\(\left(\frac{x}{2}+\frac{y}{3}\right)^2 = \left(\frac{x}{2}\right)^2 + 2\left(\frac{x}{2}\right)\left(\frac{y}{3}\right) + \left(\frac{y}{3}\right)^2\).
Step 3: Simplify:
\(= \frac{x^2}{4} + \frac{xy}{3} + \frac{y^2}{9}\).
Answer: \(\frac{x^2}{4} + \frac{xy}{3} + \frac{y^2}{9}\)

viii.  \(\left(\frac{3a}{5}+\frac{5b}{3}\right)^2\)

Step 1: Here, \(a = \frac{3a}{5}, b = \frac{5b}{3}\).
Step 2: Apply identity:
\(\left(\frac{3a}{5}+\frac{5b}{3}\right)^2 = \left(\frac{3a}{5}\right)^2 + 2\left(\frac{3a}{5}\right)\left(\frac{5b}{3}\right) + \left(\frac{5b}{3}\right)^2\).
Step 3: Simplify:
\(= \frac{9a^2}{25} + 2ab + \frac{25b^2}{9}\).
Answer: \(\frac{9a^2}{25} + 2ab + \frac{25b^2}{9}\)


Q2: Expand:

i.  \((x-9)^2\)

Step 1: Here, \(a = x, b = 9\).
Step 2: Apply identity:
\((x-9)^2 = x^2 – 2(x)(9) + 9^2\).
Step 3: Simplify:
\(= x^2 – 18x + 81\).
Answer: \(x^2 – 18x + 81\)

ii.  \((6-y)^2\)

Step 1: Here, \(a = 6, b = y\).
Step 2: Apply identity:
\((6-y)^2 = 6^2 – 2(6)(y) + y^2\).
Step 3: Simplify:
\(= 36 – 12y + y^2\).
Answer: \(y^2 – 12y + 36\)

iii.  \((3a-2)^2\)

Step 1: Here, \(a = 3a, b = 2\).
Step 2: Apply identity:
\((3a-2)^2 = (3a)^2 – 2(3a)(2) + 2^2\).
Step 3: Simplify:
\(= 9a^2 – 12a + 4\).
Answer: \(9a^2 – 12a + 4\)

iv.  \((8y-5z)^2\)

Step 1: Here, \(a = 8y, b = 5z\).
Step 2: Apply identity:
\((8y-5z)^2 = (8y)^2 – 2(8y)(5z) + (5z)^2\).
Step 3: Simplify:
\(= 64y^2 – 80yz + 25z^2\).
Answer: \(64y^2 – 80yz + 25z^2\)

v.  \(\left(\frac{x}{2}-\frac{y}{2}\right)^2\)

Step 1: Here, \(a = \frac{x}{2}, b = \frac{y}{2}\).
Step 2: Apply identity:
\(\left(\frac{x}{2}-\frac{y}{2}\right)^2 = \left(\frac{x}{2}\right)^2 – 2\left(\frac{x}{2}\right)\left(\frac{y}{2}\right) + \left(\frac{y}{2}\right)^2\).
Step 3: Simplify:
\(= \frac{x^2}{4} – \frac{xy}{2} + \frac{y^2}{4}\).
Answer: \(\frac{x^2}{4} – \frac{xy}{2} + \frac{y^2}{4}\)

vi.  \(\left(2a-\frac{5}{2}\right)^2\)

Step 1: Here, \(a = 2a, b = \frac{5}{2}\).
Step 2: Apply identity:
\(\left(2a-\frac{5}{2}\right)^2 = (2a)^2 – 2(2a)\left(\frac{5}{2}\right) + \left(\frac{5}{2}\right)^2\).
Step 3: Simplify:
\(= 4a^2 – 10a + \frac{25}{4}\).
Answer: \(4a^2 – 10a + \frac{25}{4}\)

vii.  \(\left(\frac{2}{a}-\frac{3}{b}\right)^2\)

Step 1: Here, \(a = \frac{2}{a}, b = \frac{3}{b}\).
Step 2: Apply identity:
\(\left(\frac{2}{a}-\frac{3}{b}\right)^2 = \left(\frac{2}{a}\right)^2 – 2\left(\frac{2}{a}\right)\left(\frac{3}{b}\right) + \left(\frac{3}{b}\right)^2\).
Step 3: Simplify:
\(= \frac{4}{a^2} – \frac{12}{ab} + \frac{9}{b^2}\).
Answer: \(\frac{4}{a^2} – \frac{12}{ab} + \frac{9}{b^2}\)

viii.  \(\left(3x-\frac{1}{3x}\right)^2\)

Step 1: Here, \(a = 3x, b = \frac{1}{3x}\).
Step 2: Apply identity:
\(\left(3x-\frac{1}{3x}\right)^2 = (3x)^2 – 2(3x)\left(\frac{1}{3x}\right) + \left(\frac{1}{3x}\right)^2\).
Step 3: Simplify:
\(= 9x^2 – 2 + \frac{1}{9x^2}\).
Answer: \(9x^2 – 2 + \frac{1}{9x^2}\)


Q3: Using special expansions, find the value of:

i. (53)2

Step 1: We know the identity (a+b)2 = a2 + 2ab + b2
Step 2: Write 53 as (50 + 3)
Step 3: Apply identity:
(53)2 = (50+3)2
= (50)2 + 2(50)(3) + (3)2
= 2500 + 300 + 9
Answer: 2809

ii. (84)2

Step 1: Identity: (a+b)2 = a2 + 2ab + b2
Step 2: Write 84 as (80 + 4)
Step 3: Apply identity:
(84)2 = (80+4)2
= (80)2 + 2(80)(4) + (4)2
= 6400 + 640 + 16
Answer: 7056

iii. (1011)2

Step 1: Identity: (a+b)2 = a2 + 2ab + b2
Step 2: Write 1011 as (1000 + 11)
Step 3: Apply identity:
(1011)2 = (1000+11)2
= (1000)2 + 2(1000)(11) + (11)2
= 1000000 + 22000 + 121
Answer: 1022121

iv. (10.9)2

Step 1: Identity: (a-b)2 = a2 – 2ab + b2
Step 2: Write 10.9 as (11 – 0.1)
Step 3: Apply identity:
(10.9)2 = (11 – 0.1)2
= (11)2 – 2(11)(0.1) + (0.1)2
= 121 – 2.2 + 0.01
Answer: 118.81


Q4: Using special expansions, find the value of:

i. \((67)^2\)

Step 1: We know the identity:
\((a – b)^2 = a^2 – 2ab + b^2\)
Step 2: Here, 67 can be written as (70 – 3).
So, \((67)^2 = (70 – 3)^2\)
Step 3: Expanding using identity:
\(= 70^2 – 2 × 70 × 3 + 3^2\)
\(= 4900 – 420 + 9\)
Answer: \((67)^2 = 4489\)

ii. \((795)^2\)

Step 1: Use the identity \((a – b)^2 = a^2 – 2ab + b^2\)
Step 2: Write 795 as (800 – 5).
So, \((795)^2 = (800 – 5)^2\)
Step 3: Expanding:
\(= 800^2 – 2 × 800 × 5 + 5^2\)
\(= 640000 – 8000 + 25\)
Answer: \((795)^2 = 632025\)

iii. \((988)^2\)

Step 1: Use identity \((a – b)^2 = a^2 – 2ab + b^2\)
Step 2: Write 988 as (1000 – 12).
So, \((988)^2 = (1000 – 12)^2\)
Step 3: Expanding:
\(= 1000^2 – 2 × 1000 × 12 + 12^2\)
\(= 1000000 – 24000 + 144\)
Answer: \((988)^2 = 976144\)

iv. \((9.2)^2\)

Step 1: Use identity \((a + b)^2 = a^2 + 2ab + b^2\)
Step 2: Write 9.2 as (9 + 0.2).
So, \((9.2)^2 = (9 + 0.2)^2\)
Step 3: Expanding:
\(= 9^2 + 2 × 9 × 0.2 + (0.2)^2\)
\(= 81 + 3.6 + 0.04\)
Answer: \((9.2)^2 = 84.64\)


Q5: If \(\left(x+\frac{1}{x}\right)=4\), find the value of:

i.  \( \left(x-\frac{1}{x}\right) \)

Step 1: Given \( x+\frac{1}{x}=4\).
Step 2: Square both sides to get \( \left(x+\frac{1}{x}\right)^2 = 4^2\).
Step 3: Expand: \( x^2 + 2 + \frac{1}{x^2} = 16\).
Step 4: So \( x^2 + \frac{1}{x^2} = 14\).
Step 5: Use \( \left(x-\frac{1}{x}\right)^2 = \left(x+\frac{1}{x}\right)^2 – 4\).
Step 6: Therefore \( \left(x-\frac{1}{x}\right)^2 = 16 – 4 = 12\).
Step 7: Hence \( x-\frac{1}{x} = \pm\sqrt{12} = \pm 2\sqrt{3}.\)
Answer: \( x-\frac{1}{x} = \pm 2\sqrt{3} \)

ii.  \( \left(x^2+\frac{1}{x^2}\right) \)

Step 1: From earlier squaring, \( \left(x+\frac{1}{x}\right)^2 = x^2 + 2 + \frac{1}{x^2} = 16\).
Step 2: So \( x^2 + \frac{1}{x^2} = 16 – 2 = 14.\)
Answer: \( x^2+\frac{1}{x^2} = 14 \)

iii.  \( \left(x^4+\frac{1}{x^4}\right) \)

Step 1: Square the result from part (ii): \( \left(x^2+\frac{1}{x^2}\right)^2 = 14^2\).
Step 2: Expand: \( x^4 + 2 + \frac{1}{x^4} = 196\).
Step 3: Therefore \( x^4 + \frac{1}{x^4} = 196 – 2 = 194.\)
Answer: \( x^4+\frac{1}{x^4} = 194 \)


Q6: If \(\left(z-\frac{1}{z}\right)=6\), find the values of:

i. \(\left(z+\frac{1}{z}\right)\)

Step 1: We know identity: \[ \left(z-\frac{1}{z}\right)^2 = \left(z+\frac{1}{z}\right)^2 – 4 \]Step 2: Substitute given value: \[ \left(z-\frac{1}{z}\right) = 6 \\ (6)^2 = \left(z+\frac{1}{z}\right)^2 – 4 \]Step 3: \[ 36 = \left(z+\frac{1}{z}\right)^2 – 4 \\ \left(z+\frac{1}{z}\right)^2 = 40 \]Step 4: \[ z+\frac{1}{z} = \pm \sqrt{40} = \pm 2\sqrt{10} \]Answer: \(z+\frac{1}{z} = \pm 2\sqrt{10}\)

ii. \(\left(z^2+\frac{1}{z^2}\right)\)

Step 1: We know identity: \[ \left(z+\frac{1}{z}\right)^2 = z^2 + \frac{1}{z^2} + 2 \]Step 2: From part (i): \[ \left(z+\frac{1}{z}\right)^2 = 40 \\ 40 = z^2 + \frac{1}{z^2} + 2 \]Step 3: \[ z^2 + \frac{1}{z^2} = 40 – 2 = 38 \]Answer: \(z^2+\frac{1}{z^2} = 38\)

iii. \(\left(z^4+\frac{1}{z^4}\right)\)

Step 1: We know identity: \[ \left(z^2+\frac{1}{z^2}\right)^2 = z^4 + \frac{1}{z^4} + 2 \]Step 2: From part (ii): \[ z^2 + \frac{1}{z^2} = 38 \\ (38)^2 = z^4 + \frac{1}{z^4} + 2 \]Step 3: \[ 1444 = z^4 + \frac{1}{z^4} + 2 \\ z^4 + \frac{1}{z^4} = 1442 \]Answer: \(z^4+\frac{1}{z^4} = 1442\)


Q7: If \(\left(a^2+\frac{1}{a^2}\right)=23\), find the value of \(\left(a+\frac{1}{a}\right)\).

Step 1: We know the identity:
\(\left(a+\frac{1}{a}\right)^2 = a^2 + \frac{1}{a^2} + 2\).
Step 2: Substitute the given value \(a^2+\frac{1}{a^2}=23\):
\(\left(a+\frac{1}{a}\right)^2 = 23 + 2\).
Step 3: Simplify:
\(\left(a+\frac{1}{a}\right)^2 = 25\).
Step 4: Take square root (both signs):
\(a+\frac{1}{a} = \pm \sqrt{25} = \pm 5\).
Answer: \(a+\frac{1}{a} = \pm 5\)


Q8: If \(\left(x^2+\frac{1}{x^2}\right)=102\), find the value of \(\left(x-\frac{1}{x}\right)\).

Step 1: We know the identity: \[ \left(x – \frac{1}{x}\right)^2 = x^2 + \frac{1}{x^2} – 2 \]Step 2: Substitute the given value: \[ x^2 + \frac{1}{x^2} = 102 \]So, \[ \left(x – \frac{1}{x}\right)^2 = 102 – 2 \]Step 3: Simplify: \[ \left(x – \frac{1}{x}\right)^2 = 100 \]Step 4: Take square root: \[ x – \frac{1}{x} = \pm \sqrt{100} \\ x – \frac{1}{x} = \pm 10 \]Answer: \(x – \frac{1}{x} = \pm 10\)


Q9: If \(\left(2p+\frac{1}{2p}\right)=5\), find the value of \(\left(4p^2+\frac{1}{4p^2}\right)\).

i.  Find \( \left(4p^2+\frac{1}{4p^2}\right) \)

Step 1: Put \( x = 2p + \frac{1}{2p} \).
Step 2: Given \( x = 5 \).
Step 3: Square both sides: \( x^2 = \left(2p + \frac{1}{2p}\right)^2 \).
Step 4: Expand RHS: \( = (2p)^2 + 2\cdot(2p)\cdot\left(\frac{1}{2p}\right) + \left(\frac{1}{2p}\right)^2 \).
Step 5: Simplify: \( x^2 = 4p^2 + 2 + \frac{1}{4p^2} \).
Step 6: Rearrange for required expression: \( 4p^2 + \frac{1}{4p^2} = x^2 – 2 \).
Step 7: Substitute \( x = 5 \): \( 4p^2 + \frac{1}{4p^2} = 5^2 – 2 = 25 – 2 \).
Answer: \( 23 \)


Q10: If \(\left(3c-\frac{1}{3c}\right)=8\), find the value of \(\left(9c^2+\frac{1}{9c^2}\right)\).

Step 1: Let x = 3c
Then, the given equation becomes: x – 1/x = 8
Step 2: Square both sides: (x – 1/x)² = 8²
x² + 1/x² – 2 = 64
x² + 1/x² = 66
Step 3: We need (9c² + 1/(9c²)).
But x = 3c ⇒ x² = 9c².
So, 9c² + 1/(9c²) = x² + 1/x².
Answer: 66


Q11: If \(a+b=8\) and \(ab=15\), find the value of \(\left(a^2+b^2\right)\).

Step 1: We know the identity: \[ (a+b)^2 = a^2 + b^2 + 2ab \]Step 2: Rearranging for \(a^2+b^2\): \[ a^2+b^2 = (a+b)^2 – 2ab \]Step 3: Substitute the given values \(a+b=8\) and \(ab=15\): \[ a^2+b^2 = (8)^2 – 2(15) \]Step 4: Simplify: \[ a^2+b^2 = 64 – 30 \\ a^2+b^2 = 34 \]Answer: \(a^2+b^2 = 34\)


Q12: If \(a+b=11\) and \(a^2+b^2=61\), find the value of \(ab\).

Step 1: Recall the identity: \[(a+b)^2 = a^2 + b^2 + 2ab\]Step 2: Substitute given values. \[(11)^2 = 61 + 2ab\]Step 3: Simplify. \[ 121 = 61 + 2ab \]Step 4: Subtract 61 from both sides. \[ 121 – 61 = 2ab \\ 60 = 2ab \]Step 5: Divide by 2. \[ ab = \frac{60}{2} = 30 \]Answer: ab = 30


Q13: If \(a^2+b^2=13\) and \(ab=6\), find the value of \((a+b)\).

Step 1: Recall the identity: \[ (a+b)^2 = a^2 + b^2 + 2ab \]Step 2: Substitute the given values: \[ (a+b)^2 = 13 + 2(6) \\ (a+b)^2 = 13 + 12 \\ (a+b)^2 = 25 \]Step 3: Take square root on both sides: \[ a+b = \pm \sqrt{25} \\ a+b = \pm 5 \]Answer: \(a+b = \pm 5\)


Q14: If \(a+b=15\) and \(ab=56\), find the value of \(\left(a^2+b^2\right)\).

i.  Find \(a^2+b^2\)

Step 1: Recall the identity:
\((a+b)^2 = a^2 + b^2 + 2ab\).
Step 2: Rearrange to get \(a^2+b^2\):
\(a^2 + b^2 = (a+b)^2 – 2ab\).
Step 3: Substitute the given values \(a+b=15\) and \(ab=56\):
\(a^2 + b^2 = (15)^2 – 2\times 56\).
Step 4: Simplify:
\(= 225 – 112 = 113\).
Answer: \(a^2+b^2 = 113\)


Q15: If \(a-b=1\) and \(ab=12\), find the value of \(\left(a^2+b^2\right)\).

Step 1: Recall the identity: \[ (a-b)^2 = a^2 + b^2 – 2ab \]Step 2: Substitute the given values: \[ (1)^2 = a^2 + b^2 – 2(12) \]Step 3: Simplify: \[ 1 = a^2 + b^2 – 24 \]Step 4: Add 24 on both sides: \[ a^2 + b^2 = 25 \]Answer: \(a^2+b^2 = 25\)


Q16: If \(a-b=5\) and \(a^2+b^2=53\), find the value of \(ab\).

Step 1: Recall the identity \[ (a – b)^2 = a^2 + b^2 – 2ab \]Step 2: Substitute the given values. \[ (a – b)^2 = 5^2 = 25 \\ a^2 + b^2 = 53 \]So, \[ 25 = 53 – 2ab \]Step 3: Rearrange to solve for \(ab\). \[ 2ab = 53 – 25 \\ 2ab = 28 \\ ab = 14 \]Answer: ab = 14


Q17: If \(a^2+b^2=52\) and \(ab=24\), find the value of \((a-b)\).

Step 1: Recall the identity: \[ (a-b)^2 = a^2 + b^2 – 2ab \]Step 2: Substitute the given values \(a^2+b^2=52\) and \(ab=24\): \[ (a-b)^2 = 52 – 2(24) \\ (a-b)^2 = 52 – 48 \\ (a-b)^2 = 4 \]Step 3: Take the square root on both sides: \[ a-b = \pm \sqrt{4} = \pm 2 \]Answer: \(a-b = \pm 2\)


Q18: Find the value of:

i. \(36x^2 + 49y^2 + 84xy\), when x = 3, y = 6

Step 1: Observe the expression is of the form \((ax + by)^2 = a^2x^2 + b^2y^2 + 2abxy\).
Here, \(36x^2 = (6x)^2\), \(49y^2 = (7y)^2\), and \(84xy = 2 \cdot 6x \cdot 7y\).
Step 2: So, \[ 36x^2 + 49y^2 + 84xy = (6x + 7y)^2 \]Step 3: Substitute x = 3, y = 6: \[ 6(3) + 7(6) = 18 + 42 = 60 \]Step 4: Square the result: \[ (6x + 7y)^2 = 60^2 = 3600 \]Answer: 3600

ii. \(25x^2 + 16y^2 – 40xy\), when x = 6, y = 7

Step 1: Observe the expression is of the form \((ax – by)^2 = a^2x^2 + b^2y^2 – 2abxy\).
Here, \(25x^2 = (5x)^2\), \(16y^2 = (4y)^2\), and \(-40xy = -2 \cdot 5x \cdot 4y\).
Step 2: So, \[ 25x^2 + 16y^2 – 40xy = (5x – 4y)^2 \]Step 3: Substitute x = 6, y = 7: \[ 5(6) – 4(7) = 30 – 28 = 2 \]Step 4: Square the result: \[ (5x – 4y)^2 = 2^2 = 4 \]Answer: 4


previous
next

Share the Post:

Leave a Comment

Your email address will not be published. Required fields are marked *

Related Posts​

  • Linear Inequations
    Step by Step solutions of Exercise- Competency Focused Questions of RS Aggarwal ICSE Class-8 Maths chapter 16- Linear Inequations by Goyal Brothers Prakashan is provided.
  • Linear Inequations
    Step by Step solutions of Exercise- Assertion-Reason Questions of RS Aggarwal ICSE Class-8 Maths chapter 16- Linear Inequations by Goyal Brothers Prakashan is provided.

Join Our Newsletter

Name
Email
The form has been submitted successfully!
There has been some error while submitting the form. Please verify all form fields again.

Scroll to Top