Algebraic Identities

algebraic identities class 8 rs aggarwal

Step by Step solutions of RS Aggarwal ICSE Class-8 Maths chapter 13- Algebraic Identities by Goyal Brothers Prakashan is provided

Table of Contents

Exercise: 13-B

Q1: Find the following products:

i.  \((y+9)(y-9)\)

Step 1: Recognize identity:
\((a+b)(a-b) = a^2 – b^2\)
Here, \(a = y, \; b = 9\)
Step 2: Apply identity:
\(y^2 – 9^2\)
Step 3: Simplify:
\(y^2 – 81\)
Answer: \(y^2 – 81\)

ii.  \((4+b)(4-b)\)

Step 1: Recognize identity:
\((a+b)(a-b) = a^2 – b^2\)
Here, \(a = 4, \; b = b\)
Step 2: Apply identity:
\(4^2 – b^2\)
Step 3: Simplify:
\(16 – b^2\)
Answer: \(16 – b^2\)

iii.  \(\left(z+\frac{1}{2}\right)\left(z-\frac{1}{2}\right)\)

Step 1: Recognize identity:
\((a+b)(a-b) = a^2 – b^2\)
Here, \(a = z, \; b = \frac{1}{2}\)
Step 2: Apply identity:
\(z^2 – \left(\frac{1}{2}\right)^2\)
Step 3: Simplify:
\(z^2 – \frac{1}{4}\)
Answer: \(z^2 – \frac{1}{4}\)

iv.  \(\left(a-\frac{2}{3}\right)\left(a+\frac{2}{3}\right)\)

Step 1: Recognize identity:
\((a-b)(a+b) = a^2 – b^2\)
Here, \(a = a, \; b = \frac{2}{3}\)
Step 2: Apply identity:
\(a^2 – \left(\frac{2}{3}\right)^2\)
Step 3: Simplify:
\(a^2 – \frac{4}{9}\)
Answer: \(a^2 – \frac{4}{9}\)


Q2: Find the following products:

i.  \((3x-5)(3x+5)\)

Step 1: Recognize identity:
\((a-b)(a+b) = a^2 – b^2\)
Here, \(a = 3x, \; b = 5\)
Step 2: Apply identity:
\((3x)^2 – (5)^2\)
Step 3: Simplify:
\(9x^2 – 25\)
Answer: \(9x^2 – 25\)

ii.  \((2+7x)(2-7x)\)

Step 1: Recognize identity:
\((a+b)(a-b) = a^2 – b^2\)
Here, \(a = 2, \; b = 7x\)
Step 2: Apply identity:
\((2)^2 – (7x)^2\)
Step 3: Simplify:
\(4 – 49x^2\)
Answer: \(4 – 49x^2\)

iii.  \(\left(\frac{a}{2}+3\right)\left(\frac{a}{2}-3\right)\)

Step 1: Recognize identity:
\((a+b)(a-b) = a^2 – b^2\)
Here, \(a = \frac{a}{2}, \; b = 3\)
Step 2: Apply identity:
\(\left(\frac{a}{2}\right)^2 – (3)^2\)
Step 3: Simplify:
\(\frac{a^2}{4} – 9\)
Answer: \(\frac{a^2}{4} – 9\)

iv.  \((4x+3y)(4x-3y)\)

Step 1: Recognize identity:
\((a+b)(a-b) = a^2 – b^2\)
Here, \(a = 4x, \; b = 3y\)
Step 2: Apply identity:
\(\left(4x\right)^2 – \left(3y\right)^2\)
Step 3: Simplify:
\(16x^2 – 9y^2\)
Answer: \(16x^2 – 9y^2\)


Q3: Find the following products:

i.  \(\left(\frac{a}{3}-\frac{b}{4}\right)\left(\frac{a}{3}+\frac{b}{4}\right)\)

Step 1: Recognize the identity:
\((p – q)(p + q) = p^2 – q^2\)
Here, \(p = \frac{a}{3}, \; q = \frac{b}{4}\)
Step 2: Apply identity:
\(\left(\frac{a}{3}\right)^2 – \left(\frac{b}{4}\right)^2\)
Step 3: Simplify:
\(\frac{a^2}{9} – \frac{b^2}{16}\)
Answer: \(\frac{a^2}{9} – \frac{b^2}{16}\)

ii.  \(\left(\frac{t}{2}-\frac{1}{3}\right)\left(\frac{t}{2}+\frac{1}{3}\right)\)

Step 1: Recognize the identity:
\((p – q)(p + q) = p^2 – q^2\)
Here, \(p = \frac{t}{2}, \; q = \frac{1}{3}\)
Step 2: Apply identity:
\(\left(\frac{t}{2}\right)^2 – \left(\frac{1}{3}\right)^2\)
Step 3: Simplify:
\(\frac{t^2}{4} – \frac{1}{9}\)
Answer: \(\frac{t^2}{4} – \frac{1}{9}\)


Q4: Find the following products:

i.  \(\left(\frac{2}{x}+\frac{3}{y}\right)\left(\frac{2}{x}-\frac{3}{y}\right)\)

Step 1: Recognize the identity:
\((p+q)(p-q) = p^2 – q^2\)
Here, \(p = \frac{2}{x}, \; q = \frac{3}{y}\)
Step 2: Apply identity:
\(\left(\frac{2}{x}\right)^2 – \left(\frac{3}{y}\right)^2\)
Step 3: Simplify:
\(\frac{4}{x^2} – \frac{9}{y^2}\)
Answer: \(\frac{4}{x^2} – \frac{9}{y^2}\)

ii.  \(\left(\frac{1}{a}-\frac{1}{b}\right)\left(\frac{1}{a}+\frac{1}{b}\right)\)

Step 1: Recognize the identity:
\((p – q)(p + q) = p^2 – q^2\)
Here, \(p = \frac{1}{a}, \; q = \frac{1}{b}\)
Step 2: Apply identity:
\(\left(\frac{1}{a}\right)^2 – \left(\frac{1}{b}\right)^2\)
Step 3: Simplify:
\(\frac{1}{a^2} – \frac{1}{b^2}\)
Answer: \(\frac{1}{a^2} – \frac{1}{b^2}\)

iii.  \(\left(\frac{1}{3x}+\frac{2}{5y}\right)\left(\frac{1}{3x}-\frac{2}{5y}\right)\)

Step 1: Recognize the identity:
\((p+q)(p-q) = p^2 – q^2\)
Here, \(p = \frac{1}{3x}, \; q = \frac{2}{5y}\)
Step 2: Apply identity:
\(\left(\frac{1}{3x}\right)^2 – \left(\frac{2}{5y}\right)^2\)
Step 3: Simplify:
\(\frac{1}{9x^2} – \frac{4}{25y^2}\)
Answer: \(\frac{1}{9x^2} – \frac{4}{25y^2}\)

iv.  \(\left(1.1x-0.3y\right)\left(1.1x+0.3y\right)\)

Step 1: Recognize the identity:
\((p – q)(p + q) = p^2 – q^2\)
Here, \(p = 1.1x, \; q = 0.3y\)
Step 2: Apply identity:
\((1.1x)^2 – (0.3y)^2\)
Step 3: Simplify:
\(1.21x^2 – 0.09y^2\)
Answer: \(1.21x^2 – 0.09y^2\)


Q5: Find the following products:

i.  \(\left(a^2+2b^2\right)\left(a^2-2b^2\right)\)

Step 1: Recognize the identity:
\((p+q)(p-q) = p^2 – q^2\)
Here, \(p = a^2, \; q = 2b^2\)
Step 2: Apply identity:
\((a^2)^2 – (2b^2)^2\)
Step 3: Simplify:
\(a^4 – 4b^4\)
Answer: \(a^4 – 4b^4\)

ii.  \(\left(6x^2-7y^2\right)\left(6x^2+7y^2\right)\)

Step 1: Recognize the identity:
\((p – q)(p + q) = p^2 – q^2\)
Here, \(p = 6x^2, \; q = 7y^2\)
Step 2: Apply identity:
\((6x^2)^2 – (7y^2)^2\)
Step 3: Simplify:
\(36x^4 – 49y^4\)
Answer: \(36x^4 – 49y^4\)

iii.  \(\left(4x^2+2yz\right)\left(2x^2-yz\right)\)

Step 1: Expand using distributive law:
\((4x^2)(2x^2) + (4x^2)(-yz) + (2yz)(2x^2) + (2yz)(-yz)\)
Step 2: Multiply each term:
\(8x^4 – 4x^2yz + 4x^2yz – 2y^2z^2\)
Step 3: Simplify like terms:
\(-4x^2yz + 4x^2yz = 0\)
So expression = \(8x^4 – 2y^2z^2\)
Answer: \(8x^4 – 2y^2z^2\)

iv.  \(\left(ab-\frac{3}{2}cd\right)\left(2ab+3cd\right)\)

Step 1: Expand using distributive property:
\((ab)(2ab) + (ab)(3cd) + \left(-\frac{3}{2}cd\right)(2ab) + \left(-\frac{3}{2}cd\right)(3cd)\)
Step 2: Multiply each term:
\(2a^2b^2 + 3abcd – 3abcd – \frac{9}{2}c^2d^2\)
Step 3: Simplify like terms:
\(3abcd – 3abcd = 0\)
So expression = \(2a^2b^2 – \frac{9}{2}c^2d^2\)
Answer: \(2a^2b^2 – \frac{9}{2}c^2d^2\)


Q6: Find the following products:

i.  \((2x+3)(2x-3)(4x^2+9)\)

Note / Assumption: The original text had \((2x+3)(2-3)(4x^2+9)\); here we assume the intended factor is \((2x-3)\) to match the standard identity.
Step 1: Recognize the identity:
\((u+v)(u-v)(u^2+v^2)=u^4 – v^4\).
Step 2: Put \(u=2x,\; v=3\).
Step 3: Apply identity:
\((2x+3)(2x-3)(4x^2+9) = (2x)^4 – 3^4\).
Step 4: Simplify:
\((2x)^4 = 16x^4,\; 3^4=81\) ⟹ \(16x^4 – 81\).
Answer:\(16x^4 – 81\)

ii.  \((x+2y)(x-2y)(x^2+4y^2)\)

Step 1: Identity:
\((u+v)(u-v)(u^2+v^2)=u^4 – v^4\).
Step 2: Put \(u=x,\; v=2y\).
\strong style=”color:#8A6900″>Step 3: Apply identity:
\(x^4 – (2y)^4\).
Step 4: Simplify:
\((2y)^4 = 16y^4\) ⟹ \(x^4 – 16y^4\).
Answer:\(x^4 – 16y^4\)

iii.  \((a+bc)(a-bc)(a^2+b^2c^2)\)

Step 1: Identity:
\((u+v)(u-v)(u^2+v^2)=u^4 – v^4\).
Step 2: Put \(u=a,\; v=bc\).
Step 3: Apply identity:
\(a^4 – (bc)^4\).
Step 4: Simplify:
\((bc)^4 = b^4c^4\) ⟹ \(a^4 – b^4c^4\).
Answer:\(a^4 – b^4c^4\)

iv.  \(\left(\frac{2}{5}+x\right)\left(\frac{2}{5}-x\right)\left(\frac{4}{25}+x^2\right)\)

Step 1: Identity:
\((u+v)(u-v)(u^2+v^2)=u^4 – v^4\).
Step 2: Put \(u=\frac{2}{5},\; v=x\).
Step 3: Apply identity:
\(\left(\frac{2}{5}\right)^4 – x^4\).
Step 4: Simplify:
\(\left(\frac{2}{5}\right)^4 = \frac{16}{625}\) ⟹ \(\frac{16}{625} – x^4\).
Answer:\(\frac{16}{625} – x^4\)


Q7: Using the identical \(\left(a+b\right)\left(a-b\right)=(a^2-b^2)\), evaluate the following:

i.  \(88\times112\)

Step 1: Write the factors around a convenient centre \(a\).
\(88 = 100 – 12\) and \(112 = 100 + 12\).
Step 2: Apply \((a-b)(a+b)=a^2-b^2\).
\((100-12)(100+12)=100^2-12^2\).
Step 3: Simplify.
\(100^2-12^2=10000-144=9856\).
Answer: 9856

ii.  \(153\times167\)

Step 1: Choose centre \(a=160\):
\(153 = 160 – 7\) and \(167 = 160 + 7\).
Step 2: Apply identity:
\((160-7)(160+7)=160^2-7^2\).
Step 3: Simplify.
\(160^2-7^2=25600-49=25551\).
Answer: 25551

iii.  \(10.8\times9.2\)

Step 1: Write about \(a=10\):
\(10.8 = 10 + 0.8\) and \(9.2 = 10 – 0.8\).
Step 2: Apply identity:
\((10+0.8)(10-0.8)=10^2-(0.8)^2\).
Step 3: Simplify.
\(100 – 0.64 = 99.36\).
Answer: 99.36

iv.  \(3\frac{1}{3}\times4\frac{2}{3}\)

Step 1: Convert to improper fractions.
\(3\frac{1}{3}=\frac{10}{3}\) and \(4\frac{2}{3}=\frac{14}{3}\).
Step 2: Recognise centre \(a=4\) and offset \(b=\frac{2}{3}\):
\(\frac{10}{3}=4-\frac{2}{3}\) and \(\frac{14}{3}=4+\frac{2}{3}\).
Step 3: Apply identity:
\((4-\frac{2}{3})(4+\frac{2}{3})=4^2-(\frac{2}{3})^2\).
Step 4: Simplify.
\(16-\frac{4}{9}=\frac{144}{9}-\frac{4}{9}=\frac{140}{9}\).
Answer: \(\frac{140}{9}\) or \(15\frac{5}{9}\)

v.  \(9\frac{1}{4}\times15\frac{3}{4}\)

Step 1: Convert to improper fractions.
\(9\frac{1}{4}=\frac{37}{4}\) and \(15\frac{3}{4}=\frac{63}{4}\).
Step 2: Choose a decimal centre \(a=12.5\) and offset \(b=3.25\) (or work purely with fractions).
\(\frac{37}{4}=12.5-3.25\) and \(\frac{63}{4}=12.5+3.25\).
Step 3: Apply identity:
\((12.5-3.25)(12.5+3.25)=(12.5)^2-(3.25)^2\).
Step 4: Simplify (decimal method).
\(12.5^2=156.25\) and \(3.25^2=10.5625\).
\(156.25-10.5625=145.6875\).
Fraction form: Multiply fractions directly: \(\frac{37}{4}\times\frac{63}{4}=\frac{2331}{16} = 145\frac{11}{16}\).
Answer: \(145\frac{11}{16}\) or \(\frac{2331}{16}\)


previous
next

Share the Post:

Leave a Comment

Your email address will not be published. Required fields are marked *

Related Posts​

  • Linear Inequations
    Step by Step solutions of Exercise- Competency Focused Questions of RS Aggarwal ICSE Class-8 Maths chapter 16- Linear Inequations by Goyal Brothers Prakashan is provided.
  • Linear Inequations
    Step by Step solutions of Exercise- Assertion-Reason Questions of RS Aggarwal ICSE Class-8 Maths chapter 16- Linear Inequations by Goyal Brothers Prakashan is provided.

Join Our Newsletter

Name
Email
The form has been submitted successfully!
There has been some error while submitting the form. Please verify all form fields again.

Scroll to Top