Rational Numbers

rational numbers class 8 selina

Step by Step solutions of Concise Mathematics ICSE Class-8 Maths chapter 1- Rational Numbers by Selina is provided.

Table of Contents

Exercise: 1-D

Q1: Multiple Choice Type

i. \(-\frac{4}{9}\) divided by \(-\frac{2}{3}\) gives:
Step 1: \(\frac{-4}{9} \div \frac{-2}{3} = \frac{-4}{9} \times \frac{3}{-2}\)
Step 2: Multiply the numerators and denominators: \[ = \frac{-4 \times 3}{9 \times -2} = \frac{-12}{-18} = \frac{2}{3} \] Correct Answer: a. \(\frac{2}{3}\)

ii. The rational number by which should \(\frac{1}{2}\) be divided to get \(-\frac{2}{3}\) is:
Let the number be x.
Then, \(\frac{1}{2} \div x = -\frac{2}{3}\)
So, \(x = \frac{1}{2} \div -\frac{2}{3} = \frac{1}{2} \times \frac{-3}{2} = \frac{-3}{4}\)
Correct Answer: b. \(-\frac{3}{4}\)

iii. For three rational numbers a, b and c; which of the following is correct:
Let’s analyze each option: – a. \(a \div b = b \div a\) — False (division is not commutative)
– b. \(a \times (b \div c) = (a \div b) \times (a \div c)\) — False
– c. \(a\div\left(b\div c\right)=(a\div\ b)\div(a\div\ c)\) — False
– d. \(a \times (b \div c) \ne a \div b \div c\) — True
So the most accurate mathematical identity is:
Correct Answer: d. \(a \times (b \div c) \ne a \div b \div c\)

iv. The product of two rational numbers is \(-7\frac{2}{3}\). If one of them is \(3\frac{5}{6}\), the other number is:
Convert to improper fractions: \[ -7\frac{2}{3} = -\frac{23}{3}, \quad 3\frac{5}{6} = \frac{23}{6} \] Let x be the required number. So: \[ x \times \frac{23}{6} = -\frac{23}{3} \Rightarrow x = \frac{-23}{3} \div \frac{23}{6} = \frac{-23}{3} \times \frac{6}{23} = -2 \] Correct Answer: d. -2

v. \((8\div3)\div\left(3\div8\right)\) is equal to: \[ = \frac{8}{3} \div \frac{3}{8} = \frac{8}{3} \times \frac{8}{3} = \frac{64}{9} \] Correct Answer: a. \(\frac{64}{9}\)


Q2: Evaluate

i. \(1\div\frac{1}{3}\) \[ = 1 \times \frac{3}{1} = 3 \] Answer: 3

ii. \(3\div\frac{3}{5}\) \[ = 3 \times \frac{5}{3} = \frac{15}{3} = 5 \] Answer: 5

iii. \(-\frac{5}{12}\div\frac{1}{16}\) \[ = -\frac{5}{12} \times \frac{16}{1} = \frac{-80}{12} = \frac{-20}{3} \] Answer: \(-\frac{20}{3}\)

iv. \(-\frac{21}{16}\div\left(\frac{-7}{8}\right)\) \[ = -\frac{21}{16} \times \frac{-8}{7} = \frac{168}{112} = \frac{3}{2} \] Answer: \(\frac{3}{2}\)

v. \(0\div\left(-\frac{4}{7}\right)\) \[ = 0 \] Answer: 0

vi. \(\frac{8}{-5}\div\frac{24}{25}\) \[ = -\frac{8}{5} \times \frac{25}{24} = \frac{-200}{120} = \frac{-5}{3} \] Answer: \(-\frac{5}{3}\)

vii. \(-\frac{3}{4}\div\left(-9\right)\) \[ = -\frac{3}{4} \times \frac{1}{-9} = \frac{3}{36} = \frac{1}{12} \] Answer: \(\frac{1}{12}\)

viii. \(\frac{3}{4}\div\left(-\frac{5}{12}\right)\) \[ = \frac{3}{4} \times \frac{-12}{5} = \frac{-36}{20} = \frac{-9}{5} \] Answer: \(-\frac{9}{5}\)

ix. \(-5\div\left(-\frac{10}{11}\right)\) \[ = -5 \times \frac{-11}{10} = \frac{55}{10} = \frac{11}{2} \] Answer: \(\frac{11}{2}\)

x. \(\frac{-7}{11}\div\left(\frac{-3}{44}\right)\) \[ = \frac{-7}{11} \times \frac{44}{-3} = \frac{308}{33} = \frac{28}{3} \] Answer: \(\frac{28}{3}\)


Q3: Divide

i. \(3\ by\ \frac{1}{3}\) \[ = 3 \div \frac{1}{3} = 3 \times \frac{3}{1} = \frac{9}{1} = 9 \] Answer: 9

ii. \(-2\ by\ \left(-\frac{1}{2}\right)\) \[ = -2 \div \left(-\frac{1}{2}\right) = -2 \times \left(-2\right) = 4 \] Answer: 4

iii. \(0\ by\ \frac{7}{-9}\) \[ = 0 \div \frac{-7}{9} = 0 \] Answer: 0

iv. \(\frac{-5}{8}\ by\ \frac{1}{4}\) \[ = \frac{-5}{8} \div \frac{1}{4} = \frac{-5}{8} \times \frac{4}{1} = \frac{-20}{8} = -\frac{5}{2} \] Answer: \(-\frac{5}{2}\)

v. \(-\frac{3}{4}\ by\ -\frac{9}{16}\) \[ = -\frac{3}{4} \div -\frac{9}{16} = \frac{-3}{4} \times \frac{-16}{9} = \frac{48}{36} = \frac{4}{3} \] Answer: \(\frac{4}{3}\)


Q4: The product of two rational numbers is -2. If one of them is \(\frac{4}{7}\), find the other.

Step 1: Let the required number be \(x\).
Given: \[ \frac{4}{7} \times x = -2 \]Step 2: Isolate \(x\) by dividing both sides by \(\frac{4}{7}\). \[ x = \frac{-2}{\frac{4}{7}} = -2 \times \frac{7}{4} \]Step 3: Multiply. \[ x = \frac{-14}{4} = -\frac{7}{2} \]Answer: \(-\frac{7}{2}\)


Q5: The product of two numbers is \(-\frac{4}{9}. If one of them is \(\frac{-2}{27}\), find the other.

Step 1: Let the other number be \(x\).
Given: \[ \frac{-2}{27} \times x = \frac{-4}{9} \]Step 2: Isolate \(x\) by dividing both sides by \(\frac{-2}{27}\). \[ x = \frac{-\frac{4}{9}}{-\frac{2}{27}} = \frac{-4}{9} \div \frac{-2}{27} \]Step 3: Division of rational numbers is multiplication by reciprocal. \[ x = \frac{-4}{9} \times \frac{27}{-2} \]Step 4: Multiply the numerators and the denominators. \[ x = \frac{(-4) \times 27}{9 \times (-2)} = \frac{-108}{-18} \]Step 5: Simplify. \[ x = 6 \]Answer: 6


Q6: m and n are two rational numbers such that \(m\timesn=-\frac{25}{9}\)

i. \(if\ m\ =\frac{5}{3},\ find\ n\),
Given: \[ \frac{5}{3} \times n = -\frac{25}{9} \] Step 1: Divide both sides by \( \frac{5}{3} \) \[ n = \frac{-\frac{25}{9}}{\frac{5}{3}} = \frac{-25}{9} \div \frac{5}{3} \] Step 2: Multiply by the reciprocal of the divisor \[ n = \frac{-25}{9} \times \frac{3}{5} \] Step 3: Multiply the numerators and denominators \[ n = \frac{-75}{45} \] Step 4: Simplify \[ n = \frac{-5}{3} \] Answer: \( n = \frac{-5}{3} \)

ii. \(if\ n\ =-\frac{10}{9},\ find\ m\)
Given: \[ m \times \left( -\frac{10}{9} \right) = -\frac{25}{9} \] Step 1: Divide both sides by \( -\frac{10}{9} \) \[ m = \frac{-\frac{25}{9}}{-\frac{10}{9}} = \frac{-25}{9} \div \left( -\frac{10}{9} \right) \] Step 2: Multiply by reciprocal \[ m = \frac{-25}{9} \times \frac{9}{-10} \] Step 3: Multiply the numerators and denominators \[ m = \frac{225}{90} \] Step 4: Simplify \[ m = \frac{5}{2} \] Answer: \( m = \frac{5}{2} \)


Q7: By what number must \(-\frac{3}{4}\) be multiplied so that the product is \(-\frac{9}{16}\)?

Step 1: Let the required number be \( x \) \[ -\frac{3}{4} \times x = -\frac{9}{16} \] Step 2: Divide both sides by \(-\frac{3}{4}\) \[ x = \frac{-\frac{9}{16}}{-\frac{3}{4}} = \frac{-9}{16} \div \left(-\frac{3}{4}\right) \] Step 3: Division means multiplication by reciprocal \[ x = \frac{-9}{16} \times \frac{4}{-3} \] Step 4: Multiply numerators and denominators \[ x = \frac{(-9) \times 4}{16 \times (-3)} = \frac{-36}{-48} \] Step 5: Simplify \[ x = \frac{3}{4} \]Answer: \( \frac{3}{4} \)


Q8: By what number should \(\frac{-8}{13}\) be multiplied to get 16?

Step 1: Let the required number be \( x \) \[ \frac{-8}{13} \times x = 16 \]Step 2: Divide both sides by \(\frac{-8}{13}\) \[ x = \frac{16}{\frac{-8}{13}} \]Step 3: Division means multiplication by reciprocal \[ x = 16 \times \frac{13}{-8} \]Step 4: Multiply \[ x = \frac{16 \times 13}{-8} = \frac{208}{-8} \]Step 5: Simplify \[ x = -26 \]Answer: \( -26 \)


Q9: If \(3\frac{1}{2}\) litres of milk costs ₹ 49, find the cost of one litre of milk?

Step 1: Convert the mixed number to improper fraction \[ 3\frac{1}{2} = \frac{7}{2} \]Step 2: Let the cost of 1 litre = ₹x \[ \frac{7}{2} \times x = 49 \]Step 3: Solve for x by dividing both sides by \(\frac{7}{2}\) \[ x = \frac{49}{\frac{7}{2}} = 49 \times \frac{2}{7} \]Step 4: Multiply \[ x = \frac{49 \times 2}{7} = \frac{98}{7} = 14 \]Answer: ₹14 per litre


Q10: Cost of \(3\frac{2}{5}\) metre of cloth is ₹ \(88\frac{1}{2}\). What is the cost of 1 metre of cloth?

Step 1: Convert mixed numbers to improper fractions \[ 3\frac{2}{5} = \frac{17}{5}, \quad 88\frac{1}{2} = \frac{177}{2} \]Step 2: Let the cost of 1 metre = ₹x \[ \frac{17}{5} \times x = \frac{177}{2} \]Step 3: Solve for x by dividing both sides by \(\frac{17}{5}\) \[ x = \frac{\frac{177}{2}}{\frac{17}{5}} = \frac{177}{2} \times \frac{5}{17} \]Step 4: Multiply \[ x = \frac{177 \times 5}{2 \times 17} = \frac{885}{34} \]Step 5: Convert to mixed number (optional) \[ \frac{885}{34} = 26\frac{1}{34} \]Answer: ₹26\(\frac{1}{34}\) per metre


Q11: Divide the sum of \(\frac{3}{7}\ and\ \frac{-5}{14}\ by\ -\frac{1}{2}\).

Step 1: Add the two rational numbers in the numerator \[ \frac{3}{7} + \left(-\frac{5}{14}\right) = \frac{6}{14} – \frac{5}{14} = \frac{1}{14} \]Step 2: Now divide the result by \(-\frac{1}{2}\) \[ \frac{1}{14} \div \left(-\frac{1}{2}\right) = \frac{1}{14} \times \left(-2\right) \]Step 3: Multiply \[ = \frac{1 \times (-2)}{14} = \frac{-2}{14} = -\frac{1}{7} \]Answer: \(-\frac{1}{7}\)


Q12: Find \((m\ +\ n)\ \div\ (m— n) \), if:

i. \(m=\frac{2}{3}\ and\ n=\frac{3}{2}\)
Step 1: Calculate \(m + n\) \[ \frac{2}{3} + \frac{3}{2} = \frac{4}{6} + \frac{9}{6} = \frac{13}{6} \]Step 2: Calculate \(m – n\) \[ \frac{2}{3} – \frac{3}{2} = \frac{4}{6} – \frac{9}{6} = \frac{-5}{6} \]Step 3: Divide \( (m + n) \div (m – n) \) \[ \frac{13}{6} \div \frac{-5}{6} = \frac{13}{6} \times \frac{-6}{5} = \frac{-78}{30} = -\frac{13}{5} \]Answer: \(-\frac{13}{5}\)

ii. \(m=\frac{3}{4}\ and\ n=\frac{4}{3}\)
Step 1: \(m + n = \frac{3}{4} + \frac{4}{3} = \frac{9}{12} + \frac{16}{12} = \frac{25}{12}\)
Step 2: \(m – n = \frac{3}{4} – \frac{4}{3} = \frac{9}{12} – \frac{16}{12} = \frac{-7}{12}\)
Step 3: \(\frac{25}{12} \div \frac{-7}{12} = \frac{25}{12} \times \frac{-12}{7} = \frac{-300}{84} = -\frac{25}{7}\)Answer: \(-\frac{25}{7}\)

iii. \(m=\frac{4}{5}\ and\ n=-\frac{3}{10}\)
Step 1: \(m + n = \frac{4}{5} + \left(-\frac{3}{10}\right) = \frac{8}{10} – \frac{3}{10} = \frac{5}{10} = \frac{1}{2}\)
Step 2: \(m – n = \frac{4}{5} – \left(-\frac{3}{10}\right) = \frac{8}{10} + \frac{3}{10} = \frac{11}{10}\)
Step 3: \(\frac{1}{2} \div \frac{11}{10} = \frac{1}{2} \times \frac{10}{11} = \frac{10}{22} = \frac{5}{11}\)Answer: \(\frac{5}{11}\)


Q13: The product of two rational numbers is -5. If one of these numbers is \(\frac{-7}{15}\), find the other.

Let the other rational number be \(x\). We are given: \[ \frac{-7}{15} \times x = -5 \]Step 1: Isolate \(x\) \[ x = \frac{-5}{\left(\frac{-7}{15}\right)} \]Step 2: Invert the divisor and multiply \[ x = -5 \div \left(-\frac{7}{15}\right) = -5 \times \left(-\frac{15}{7}\right) \]Step 3: Multiply \[ x = \frac{75}{7} \]Answer: \(\frac{75}{7}\)


Q14: Divide the sum of \(\frac{5}{8}\ and\ \frac{-11}{12}\) by the difference of \(\frac{3}{7}\ and\ \frac{5}{14}\).

Step 1: Write the expression \[ \frac{\left(\frac{5}{8} + \frac{-11}{12}\right)}{\left(\frac{3}{7} – \frac{5}{14}\right)} \]Step 2: Solve the numerator (Addition) \[ \frac{5}{8} + \left(-\frac{11}{12}\right) = \frac{5}{8} – \frac{11}{12} \]LCM of 8 and 12 = 24 \[ \frac{15}{24} – \frac{22}{24} = \frac{-7}{24} \]Step 3: Solve the denominator (Subtraction) \[ \frac{3}{7} – \frac{5}{14} \]LCM of 7 and 14 = 14 \[ \frac{6}{14} – \frac{5}{14} = \frac{1}{14} \]Step 4: Division of two rational numbers \[ \frac{-7}{24} \div \frac{1}{14} = \frac{-7}{24} \times \frac{14}{1} \]Step 5: Multiply \[ \frac{-7 \times 14}{24 \times 1} = \frac{-98}{24} \]Step 6: Simplify \[ \frac{-98}{24} = \frac{-49}{12} \]Answer: \(\frac{-49}{12}\)


Q15: The area of a rectangular plate is \(5\frac{5}{7}\) m2 and its length is \(3\frac{3}{4}\) m, find its breadth and its perimeter.

Step 1: Convert mixed fractions to improper fractions
Area = \(5\frac{5}{7} = \frac{40}{7}\) m²
Length = \(3\frac{3}{4} = \frac{15}{4}\) mStep 2: Use formula for area of rectangle \[ \text{Area} = \text{Length} \times \text{Breadth} \Rightarrow \text{Breadth} = \frac{\text{Area}}{\text{Length}} = \frac{40}{7} \div \frac{15}{4} \]Step 3: Divide the fractions \[ \frac{40}{7} \div \frac{15}{4} = \frac{40}{7} \times \frac{4}{15} = \frac{160}{105} \]Step 4: Simplify \[ \frac{160}{105} = \frac{32}{21} \]Breadth = \(\frac{32}{21}\) m

Step 5: Use formula for perimeter of rectangle \[ \text{Perimeter} = 2 \times (\text{Length} + \text{Breadth}) = 2 \times \left( \frac{15}{4} + \frac{32}{21} \right) \]Step 6: Take LCM of 4 and 21
LCM = 84 \[ \frac{15}{4} = \frac{315}{84},\quad \frac{32}{21} = \frac{128}{84} \]\[ \frac{315 + 128}{84} = \frac{443}{84} \Rightarrow 2 \times \frac{443}{84} = \frac{886}{84} \]Step 7: Simplify \[ \frac{886}{84} = \frac{443}{42} \]Perimeter = \(\frac{443}{42}\) m


Q16: The area of piece of paper is \(7\frac{3}{26}\) cm2 and its breadth is \(2\frac{9}{13}\) cm. Find its length and perimeter.

Step 1: Convert mixed fractions to improper fractions

\[ \text{Area} = 7\frac{3}{26} = \frac{(7 \times 26) + 3}{26} = \frac{182 + 3}{26} = \frac{185}{26} \]\[ \text{Breadth} = 2\frac{9}{13} = \frac{(2 \times 13) + 9}{13} = \frac{26 + 9}{13} = \frac{35}{13} \]Step 2: Use formula: Area = Length × Breadth

\[ \text{Length} = \frac{\text{Area}}{\text{Breadth}} = \frac{185}{26} \div \frac{35}{13} \]Step 3: Division of fractions means multiplying by reciprocal

\[ \text{Length} = \frac{185}{26} \times \frac{13}{35} \]Now, simplify:\[ \frac{185}{26} \times \frac{13}{35} = \frac{185 \times 13}{26 \times 35} \]Factor and simplify:\[ 185 = 5 \times 37,\quad 13 \text{ is a prime},\quad 26 = 2 \times 13 \]Cancel 13:\[ = \frac{185}{2 \times 35} = \frac{185}{70} \]Simplify:\[ \frac{185}{70} = \frac{37}{14} \]Length = \(\frac{37}{14}\) cm
Step 4: Find the perimeter of the rectangle
Formula: \[ \text{Perimeter} = 2 \times (\text{Length} + \text{Breadth}) = 2 \times \left(\frac{37}{14} + \frac{35}{13}\right) \]Take LCM of 14 and 13 = 182
\[ \frac{37}{14} = \frac{37 \times 13}{182} = \frac{481}{182},\quad \frac{35}{13} = \frac{35 \times 14}{182} = \frac{490}{182} \]\[ \text{Sum} = \frac{481 + 490}{182} = \frac{971}{182} \]\[ \text{Perimeter} = 2 \times \frac{971}{182} = \frac{1942}{182} \]Simplify:\[ = \frac{971}{91} \]Perimeter = \(\frac{971}{91}\) cm

previous
next

Share the Post:

Leave a Comment

Your email address will not be published. Required fields are marked *

Related Posts​

  • Identities
    Step by Step solutions of Test Yourself Concise Mathematics ICSE Class-8 Maths chapter 12- Identities by Selina is provided.
  • Identities
    Step by Step solutions of Exercise- 12B Concise Mathematics ICSE Class-8 Maths chapter 12- Identities by Selina is provided.

Join Our Newsletter

Name
Email
The form has been submitted successfully!
There has been some error while submitting the form. Please verify all form fields again.

Scroll to Top