Rational Numbers

rational numbers class 8 selina

Step by Step solutions of Concise Mathematics ICSE Class-8 Maths chapter 1- Rational Numbers by Selina is provided.

Table of Contents

Exercise: 1-C

Q1: Multiple Choice Type:

i. The number which on multiplying with \(5\frac{2}{3}\) gives \(-1\frac{2}{3}\) is:
Let the required number be \(x\)
We are given: \[ x \times 5\frac{2}{3} = -1\frac{2}{3} \] Convert mixed numbers to improper fractions: \[ x \times \frac{17}{3} = \frac{-5}{3} \] Now solve for \(x\): \[ x = \frac{-5}{3} \div \frac{17}{3} \] \[ x = \frac{-5}{3} \times \frac{3}{17} \] \[ x = \frac{-15}{51} = \frac{-5}{17} \] Correct Answer: (c) \(-\frac{5}{17}\)

ii. If a, b and c are three rational numbers, we have:
We apply the distributive property of multiplication over subtraction: \[ a \times (b – c) = a \times b – a \times c \] Correct Answer: (c)

iii. The product of a positive rational number and its reciprocal is:
Let the number be \(\frac{a}{b}\), where \(a > 0,\ b > 0\)
Then its reciprocal is \(\frac{b}{a}\)

Product: \[ \frac{a}{b} \times \frac{b}{a} = \frac{ab}{ba} = 1 \] Correct Answer: (c) 1

iv. The area of a rectangular paper is \(7\frac{1}{3}\) cm2. If its length \(4\frac{2}{5}\) cm, its breadth is:
Let breadth = \(x\)
Area = Length × Breadth \[ 7\frac{1}{3} = 4\frac{2}{5} \times x \] Convert mixed numbers to improper fractions: \[ \frac{22}{3} = \frac{22}{5} \times x \] Now solve for \(x\): \[ x = \frac{22}{3} \div \frac{22}{5} = \frac{22}{3} \times \frac{5}{22} = \frac{5}{3} = 1\frac{2}{3} \text{ cm} \] Correct Answer: (b) \(1\frac{2}{3}\) cm

v. The product of a rational number \(\frac{2}{7}\) and its additive inverse is:
Additive inverse of \(\frac{2}{7}\) is \(-\frac{2}{7}\)
\[ \frac{2}{7} \times \left(-\frac{2}{7}\right) = \frac{-4}{49} \] Correct Answer: (b) \(-\frac{4}{49}\)


Q2: Evaluate

i. \(\frac{-14}{5}\times\frac{-6}{7}\)
Step-by-step: \[ \frac{-14}{5} \times \frac{-6}{7} = \frac{(-14) \times (-6)}{5 \times 7} = \frac{84}{35} \] Simplify: \[ \frac{84}{35} = \frac{12}{5} \] Answer: \(\frac{12}{5}\)

ii. \(\frac{7}{6}\times\frac{-18}{91}\)
Step-by-step: \[ \frac{7}{6} \times \frac{-18}{91} = \frac{7 \times (-18)}{6 \times 91} = \frac{-126}{546} \] Simplify:
Divide numerator and denominator by 42: \[ \frac{-126 \div 42}{546 \div 42} = \frac{-3}{13} \] Answer: \(\frac{-3}{13}\)

iii. \(\frac{-125}{72}\times\frac{9}{-5}\)
Step-by-step:
Two negatives make a positive: \[ \frac{-125}{72} \times \frac{9}{-5} = \frac{125 \times 9}{72 \times 5} = \frac{1125}{360} \] Simplify:
Divide numerator and denominator by 45: \[ \frac{1125 \div 45}{360 \div 45} = \frac{25}{8} \] Answer: \(\frac{25}{8}\)

iv. \(\frac{-11}{9}\times\frac{-51}{44}\)
Step-by-step:
Two negatives make a positive: \[ \frac{-11}{9} \times \frac{-51}{-44} = \frac{-561}{396} \] Simplify:
Divide numerator and denominator by 33: \[ \frac{-561 \div 33}{396 \div 33} = \frac{-17}{12} \] Answer: \(\frac{-17}{12}\)

v. \(-\frac{16}{5}\times\frac{20}{8}\)
Step-by-step: \[ -\frac{16}{5} \times \frac{20}{8} = \frac{-320}{40} = -8 \] Answer: \(-8\)


Q3: Multiply

i. \(\frac{5}{6}\ and\ \frac{8}{9}\)
Step-by-step: \[ \frac{5}{6} \times \frac{8}{9} = \frac{5 \times 8}{6 \times 9} = \frac{40}{54} \] Simplify: \[ \frac{40}{54} = \frac{20}{27} \] (Divide both by 2)
Answer: \(\frac{20}{27}\)

ii. \(\frac{2}{7}\ and\ \frac{-14}{9}\)
Step-by-step: \[ \frac{2}{7} \times \frac{-14}{9} = \frac{2 \times -14}{7 \times 9} = \frac{-28}{63} \] Simplify: \[ \frac{-28}{63} = \frac{-4}{9} \] (Divide both by 7)
Answer: \(\frac{-4}{9}\)

iii. \(\frac{-7}{8}\ and\ 4\)
Step-by-step: \[ \frac{-7}{8} \times 4 = \frac{-7 \times 4}{8} = \frac{-28}{8} = \frac{-7}{2} \] Answer: \(\frac{-7}{2}\)

iv. \(\frac{36}{-7}\ and\ \frac{-9}{28}\)
Step-by-step:
Two negatives make a positive: \[ \frac{36}{-7} \times \frac{-9}{28} = \frac{36 \times 9}{7 \times 28} = \frac{324}{196} \] Simplify:
Divide numerator and denominator by 4: \[ \frac{324 \div 4}{196 \div 4} = \frac{81}{49} \] Answer: \(\frac{81}{49}\)

v. \(\frac{-7}{10}\ and\ \frac{-8}{15}\)
Step-by-step: \[ \frac{-7}{10} \times \frac{-8}{15} = \frac{56}{150} \] Simplify: \[ \frac{56}{150} = \frac{28}{75} \] (Divide by 2)
Answer: \(\frac{28}{75}\)


Q4: Evaluate

i. \(\left(\frac{2}{-3}\times\frac{5}{4}\right)+\left(\frac{5}{9}\times\frac{3}{-10}\right)\)
Step-by-step: \[ \frac{2}{-3} \times \frac{5}{4} = \frac{-10}{12} = \frac{-5}{6} \] \[ \frac{5}{9} \times \frac{3}{-10} = \frac{-15}{90} = \frac{-1}{6} \] Now add both: \[ \frac{-5}{6} + \frac{-1}{6} = \frac{-6}{6} = -1 \] Answer: \(-1\)

ii. \(\left(2\times\frac{1}{4}\right)-\left(\frac{-18}{7}\times\frac{-7}{15}\right)\)
Step-by-step: \[ 2 \times \frac{1}{4} = \frac{2}{4} = \frac{1}{2} \] \[ \frac{-18}{7} \times \frac{-7}{15} = \frac{126}{105} = \frac{6}{5} \] (Simplified)
Now subtract: \[ \frac{1}{2} – \frac{6}{5} = \frac{5 – 12}{10} = \frac{-7}{10} \] Answer: \(\frac{-7}{10}\)

iii. \(\left(-5\times\frac{2}{15}\right)-\left(-6\times\frac{2}{9}\right)\)
Step-by-step: \[ -5 \times \frac{2}{15} = \frac{-10}{15} = \frac{-2}{3} \] \[ -6 \times \frac{2}{9} = \frac{-12}{9} = \frac{-4}{3} \] Now subtract: \[ \frac{-2}{3} – (\frac{-4}{3}) = \frac{-2}{3} + \frac{4}{3} = \frac{2}{3} \] Answer: \(\frac{2}{3}\)

iv. \(\left(\frac{8}{5}\times\frac{-3}{2}\right)+\left(\frac{-3}{10}\times\frac{9}{16}\right)\)
Step-by-step: \[ \frac{8}{5} \times \frac{-3}{2} = \frac{-24}{10} = \frac{-12}{5} \] \[ \frac{-3}{10} \times \frac{9}{16} = \frac{-27}{160} \] Now add:
Convert both to common denominator (LCM = 160): \[ \frac{-12}{5} = \frac{-384}{160} \] \[ \frac{-384}{160} + \frac{-27}{160} = \frac{-411}{160} \] Answer: \(\frac{-411}{160}\)


Q5: Multiply each rational number, given below, by one (1):

i. \(\frac{7}{-5}\)
Step-by-step:
Any number multiplied by 1 gives the number itself: \[ \frac{7}{-5} \times 1 = \frac{7}{-5} \] Answer: \(\frac{7}{-5}\)

ii. \(\frac{-3}{-4}\)
Step-by-step: \[ \frac{-3}{-4} \times 1 = \frac{-3}{-4} = \frac{3}{4} \] (Negative signs cancel)
Answer: \(\frac{3}{4}\)

iii. 0
Step-by-step:
Zero multiplied by any number is always zero: \[ 0 \times 1 = 0 \] Answer: \(0\)

iv. \(\frac{-8}{13}\)
Step-by-step: \[ \frac{-8}{13} \times 1 = \frac{-8}{13} \] Answer: \(\frac{-8}{13}\)

v. \(\frac{-6}{-7}\)
Step-by-step: \[ \frac{-6}{-7} \times 1 = \frac{-6}{-7} = \frac{6}{7} \] (Negative signs cancel)
Answer: \(\frac{6}{7}\)


Q6: For each pair of rational numbers. given below, verify that the multiplication is commutative:

i. \(\frac{-1}{5}\ and\ \frac{2}{9}\)
Check: \(\frac{-1}{5} \times \frac{2}{9} = \frac{2}{9} \times \frac{-1}{5}\)

LHS: \[ \frac{-1}{5} \times \frac{2}{9} = \frac{-2}{45} \] RHS: \[ \frac{2}{9} \times \frac{-1}{5} = \frac{-2}{45} \] Yes, multiplication is commutative.

ii. \(\frac{5}{-3}\ and\frac{13}{-11}\)
Check: \(\frac{5}{-3} \times \frac{13}{-11} = \frac{13}{-11} \times \frac{5}{-3}\)

LHS: \[ \frac{5}{-3} \times \frac{13}{-11} = \frac{65}{33} \] RHS: \[ \frac{13}{-11} \times \frac{5}{-3} = \frac{65}{33} \] Yes, multiplication is commutative.

iii. \(3\ and\frac{-8}{9}\)
Check: \(3 \times \frac{-8}{9} = \frac{-8}{9} \times 3\)

LHS: \[ 3 \times \frac{-8}{9} = \frac{-24}{9} \] RHS: \[ \frac{-8}{9} \times 3 = \frac{-24}{9} \] Yes, multiplication is commutative.

iv. \(0\ and\frac{-12}{17}\)
Check: \(0 \times \frac{-12}{17} = \frac{-12}{17} \times 0\)

LHS: \[ 0 \times \frac{-12}{17} = 0 \] RHS: \[ \frac{-12}{17} \times 0 = 0 \] Yes, multiplication is commutative.


Q7: Write the reciprocal (multiplicative inverse) of each rational number given below:

i. 5
Reciprocal of a number \(x\) is \(\frac{1}{x}\) \[ \text{Reciprocal of } 5 = \frac{1}{5} \] Answer: \(\frac{1}{5}\)

ii. -3 \[ \text{Reciprocal of } -3 = \frac{1}{-3} = -\frac{1}{3} \] Answer: \(-\frac{1}{3}\)

iii. \(\frac{5}{11}\) \[ \text{Reciprocal of } \frac{5}{11} = \frac{11}{5} \] Answer: \(\frac{11}{5}\)

iv. \(\frac{-7}{-8}\)
Note: \(\frac{-7}{-8} = \frac{7}{8}\) (negative signs cancel out) \[ \text{Reciprocal of } \frac{7}{8} = \frac{8}{7} \] Answer: \(\frac{8}{7}\)

v. \(\frac{-8}{-7}\)
Note: \(\frac{-8}{-7} = \frac{8}{7}\) \[ \text{Reciprocal of } \frac{8}{7} = \frac{7}{8} \] Answer: \(\frac{7}{8}\)


Q8: Find the reciprocal (multiplicative inverse) of:

i. \(\frac{3}{5}\times\frac{2}{3}\)
Step 1: Multiply the two rational numbers \[ \frac{3}{5} \times \frac{2}{3} = \frac{3 \times 2}{5 \times 3} = \frac{6}{15} = \frac{2}{5} \] Step 2: Find the reciprocal of the product \[ \text{Reciprocal of } \frac{2}{5} = \frac{5}{2} \] Answer: \(\frac{5}{2}\)

ii. \(\frac{-8}{3}\times\frac{13}{-7}\)
Step 1: Multiply the two rational numbers \[ \frac{-8}{3} \times \frac{13}{-7} = \frac{-8 \times 13}{3 \times -7} = \frac{-104}{-21} = \frac{104}{21} \] Step 2: Find the reciprocal of the product \[ \text{Reciprocal of } \frac{104}{21} = \frac{21}{104} \] Answer: \(\frac{21}{104}\)

iii. \(\frac{-3}{5}\times\frac{-1}{13}\)
Step 1: Multiply the two rational numbers \[ \frac{-3}{5} \times \frac{-1}{13} = \frac{3 \times 1}{5 \times 13} = \frac{3}{65} \] Step 2: Find the reciprocal of the product \[ \text{Reciprocal of } \frac{3}{65} = \frac{65}{3} \] Answer: \(\frac{65}{3}\)


Q9: Verify that \(\left(x+y\right)\times\ z=x\times\ z+y\times\ z\), if

i. \(x=\frac{4}{5},\ y=\frac{-2}{3}\ and\ z=-4\)
Step 1: Calculate LHS → \((x + y) \times z\) \[ x + y = \frac{4}{5} + \left(\frac{-2}{3}\right) = \frac{4}{5} – \frac{2}{3} \] LCM of 5 and 3 = 15 \[ \frac{4}{5} = \frac{12}{15}, \quad \frac{2}{3} = \frac{10}{15} \] \[ x + y = \frac{12}{15} – \frac{10}{15} = \frac{2}{15} \] \[ (x + y) \times z = \frac{2}{15} \times (-4) = \frac{-8}{15} \]Step 2: Calculate RHS → \(x \times z + y \times z\) \[ x \times z = \frac{4}{5} \times (-4) = \frac{-16}{5} \] \[ y \times z = \frac{-2}{3} \times (-4) = \frac{8}{3} \] Now add the results: \[ \frac{-16}{5} + \frac{8}{3} \] LCM = 15: \[ \frac{-16}{5} = \frac{-48}{15}, \quad \frac{8}{3} = \frac{40}{15} \] \[ \frac{-48}{15} + \frac{40}{15} = \frac{-8}{15} \]Answer: Verified, LHS = RHS = \(\frac{-8}{15}\)

ii. \(x=2\ ,\ y=\frac{4}{5}\ and\ z=\frac{3}{-10}\)
Step 1: Calculate LHS → \((x + y) \times z\) \[ x + y = 2 + \frac{4}{5} = \frac{10}{5} + \frac{4}{5} = \frac{14}{5} \] \[ (x + y) \times z = \frac{14}{5} \times \left(\frac{-3}{10}\right) = \frac{-42}{50} = \frac{-21}{25} \]Step 2: Calculate RHS → \(x \times z + y \times z\) \[ x \times z = 2 \times \left(\frac{-3}{10}\right) = \frac{-6}{10} = \frac{-3}{5} \] \[ y \times z = \frac{4}{5} \times \left(\frac{-3}{10}\right) = \frac{-12}{50} = \frac{-6}{25} \] Now add the results: \[ \frac{-3}{5} = \frac{-15}{25} \] \[ \frac{-15}{25} + \frac{-6}{25} = \frac{-21}{25} \]Answer: Verified, LHS = RHS = \(\frac{-21}{25}\)


Q10: Verify that \(x\times\left(y-z\right)=x\times\ y-x\times\ z\), if

i. \(x=\frac{4}{5},\ y=\frac{7}{4}\ and\ z=3\)
Step 1: Calculate LHS → \(x \times (y – z)\) \[ y – z = \frac{7}{4} – 3 = \frac{7}{4} – \frac{12}{4} = \frac{-5}{4} \] \[ x \times (y – z) = \frac{4}{5} \times \left(\frac{-5}{4}\right) = \frac{-20}{20} = -1 \]Step 2: Calculate RHS → \(x \times y – x \times z\) \[ x \times y = \frac{4}{5} \times \frac{7}{4} = \frac{28}{20} = \frac{7}{5} \] \[ x \times z = \frac{4}{5} \times 3 = \frac{12}{5} \] \[ x \times y – x \times z = \frac{7}{5} – \frac{12}{5} = \frac{-5}{5} = -1 \]Answer: Verified, LHS = RHS = -1

ii. \(x=\frac{3}{4},\ y=\frac{8}{9}\ and\ z=-5\)
Step 1: Calculate LHS → \(x \times (y – z)\) \[ y – z = \frac{8}{9} – (-5) = \frac{8}{9} + 5 = \frac{8}{9} + \frac{45}{9} = \frac{53}{9} \] \[ x \times (y – z) = \frac{3}{4} \times \frac{53}{9} = \frac{159}{36} \]Step 2: Calculate RHS → \(x \times y – x \times z\) \[ x \times y = \frac{3}{4} \times \frac{8}{9} = \frac{24}{36} \] \[ x \times z = \frac{3}{4} \times (-5) = \frac{-15}{4} \]Now subtract: \[ \text{Convert } \frac{-15}{4} = \frac{-135}{36} \] \[ x \times y – x \times z = \frac{24}{36} – \left(\frac{-135}{36}\right) = \frac{24 + 135}{36} = \frac{159}{36} \]Answer: Verified, LHS = RHS = \(\frac{159}{36}\)


Q11: Name multiplication property of rational numbers shown below:

i. \(\frac{3}{5}\times\frac{-8}{9}=\frac{-8}{9}\times\frac{3}{5}\)
This shows that the order of multiplication does not affect the result.
Answer: Commutative Property of Multiplication

ii. \(\frac{-3}{4}\times\left(\frac{5}{7}\times\frac{-8}{15}\right)=\left(\frac{-3}{4}\times\frac{5}{7}\right)\times\frac{-8}{15}\)
This shows that how numbers are grouped (associativity) does not affect the product.
Answer: Associative Property of Multiplication

iii. \(\frac{4}{5}\times\left(\frac{3}{-8}+\frac{-4}{7}\right)=\frac{4}{5}\times\frac{3}{-8}+\frac{4}{5}\times\frac{-4}{7}\)
This shows that multiplication distributes over addition.
Answer: Distributive Property of Multiplication over Addition

iv. \(\frac{-7}{5}\times\frac{5}{-7}=1\)
The product of a number and its reciprocal is 1.
Answer: Multiplicative Inverse Property

v. \(\frac{8}{-9}\times1=1\times\frac{8}{-9}=\frac{8}{-9}\)
Multiplying any rational number by 1 leaves it unchanged.
Answer: Multiplicative Identity Property


Q12: Fill in the blanks:

i. The product of two positive rational numbers Is always ____________.
Answer: positive

ii. The product of two negative rational numbers Is always ____________.
Answer: positive

iii. If two rational numbers have opposite signs then their product is always ___________.
Answer: negative

iv. The reciprocal of a positive rational number is ____________ and the reciprocal of a negative rational number is __________.
Answer: positive, negative

v. Rational number 0 has ___________ reciprocal.
Answer: no

vi. The product of a non-zero rational number and its reciprocal is ___________.
Answer: 1

vii. The numbers ___________ and __________ are their own reciprocals.
Answer: 1 and -1

viii. If m is reciprocal of n, then the reciprocal of n is __________.
Answer: n


Q13: The length and breadth of a rectangular piece of paper are 9 cm and \(10\frac{2}{3} cm respectively. Find:

i. its area

Let length = \( 9 \) cm and breadth = \( 10\frac{2}{3} = \frac{32}{3} \) cm

Area of rectangle = Length × Breadth

\[ \text{Area} = 9 \times \frac{32}{3} = \frac{9 \times 32}{3} = \frac{288}{3} = 96 \text{ cm}^2 \]Answer: Area = 96 cm²

ii. its perimeter

Perimeter of rectangle = \(2 \times (\text{Length} + \text{Breadth})\)

Length = 9, Breadth = \(\frac{32}{3}\)

\[ \text{Perimeter} = 2 \times \left(9 + \frac{32}{3}\right) = 2 \times \left(\frac{27}{3} + \frac{32}{3}\right) = 2 \times \frac{59}{3} = \frac{118}{3} = 39\frac{1}{3} \text{ cm} \]Answer: Perimeter = \(39\frac{1}{3}\) cm


Q14: Find the area and the perimeter of a rectangular piece of land with length \(7\frac{2}{5}\) m and breadth \(4\frac{1}{6}\) m.

i. Area

Convert the mixed numbers to improper fractions:
Length = \(7\frac{2}{5} = \frac{37}{5}\) m
Breadth = \(4\frac{1}{6} = \frac{25}{6}\) m

Area = Length × Breadth

\[ \text{Area} = \frac{37}{5} \times \frac{25}{6} = \frac{925}{30} = \frac{185}{6} \text{ m}^2 = 30\frac{5}{6} \text{ m}^2 \]Answer: Area = \(30\frac{5}{6}\) m²

ii. Perimeter

Perimeter = \(2 \times ( \text{Length} + \text{Breadth} )\)

\[ \text{Length} + \text{Breadth} = \frac{37}{5} + \frac{25}{6} = \frac{(37 \times 6 + 25 \times 5)}{30} = \frac{222 + 125}{30} = \frac{347}{30} \]\[ \text{Perimeter} = 2 \times \frac{347}{30} = \frac{694}{30} = \frac{347}{15} = 23\frac{2}{15} \text{ m} \]Answer: Perimeter = \(23\frac{2}{15}\) m
previous
next

Share the Post:

Leave a Comment

Your email address will not be published. Required fields are marked *

Related Posts​

  • Identities
    Step by Step solutions of Test Yourself Concise Mathematics ICSE Class-8 Maths chapter 12- Identities by Selina is provided.
  • Identities
    Step by Step solutions of Exercise- 12B Concise Mathematics ICSE Class-8 Maths chapter 12- Identities by Selina is provided.

Join Our Newsletter

Name
Email
The form has been submitted successfully!
There has been some error while submitting the form. Please verify all form fields again.

Scroll to Top