Fundamental Concepts and Operations on Algebraic Expressions

fundamental concepts and operations on algebraic expressions class 8 rs aggarwal

Step by Step solutions of RS Aggarwal ICSE Class-8 Maths chapter 12- Fundamental Concepts and Operations on Algebraic Expressions by Goyal Brothers Prakashan is provided

Table of Contents

Exercise: 12-C

Q1: Multiply:

i. \(8x^2\) by \(-5x\)

Step 1: Multiply the coefficients: \(8 \times (-5) = -40\)
Step 2: Multiply the variables: \(x^2 \times x = x^3\)
Answer: \(-40x^3\)

ii. \(\frac{2}{3}ab\) by \(-6a^2b\)

Step 1: Multiply the coefficients: \(\frac{2}{3} \times -6 = -4\)
Step 2: Multiply variables: \(ab \times a^2b = a^3b^2\)
Answer: \(-4a^3b^2\)

iii. \(7x^2y^3\) by \(-4x^3y\)

Step 1: Multiply coefficients: \(7 \times -4 = -28\)
Step 2: Multiply variables: \(x^2 \times x^3 = x^5\), \(y^3 \times y = y^4\)
Answer: \(-28x^5y^4\)

iv. \(\left(-\frac{5}{9}ax^2\right)\) by \(\left(-\frac{3}{5}bxa^2\right)\)

Step 1: Multiply coefficients: \(-\frac{5}{9} \times -\frac{3}{5} = \frac{15}{45} = \frac{1}{3}\)
Step 2: Multiply variables: \(a \times a^2 = a^3\), \(x^2 \times x = x^3\), include \(b\)
Answer: \(\frac{1}{3}a^3bx^3\)

v. \(\left(-\frac{2}{3}a^6b^5\right)\) by \(\left(-\frac{9}{4}a^2b^3\right)\)

Step 1: Multiply coefficients: \(-\frac{2}{3} \times -\frac{9}{4} = \frac{18}{12} = \frac{3}{2}\)
Step 2: Multiply variables: \(a^6 \times a^2 = a^8\), \(b^5 \times b^3 = b^8\)
Answer: \(\frac{3}{2}a^8b^8\)

vi. \(\left(-\frac{5}{8}p^2q\right)\) by \(\left(\frac{16}{25}pq^2\right)\)

Step 1: Multiply coefficients: \(-\frac{5}{8} \times \frac{16}{25} = -\frac{80}{200} = -\frac{2}{5}\)
Step 2: Multiply variables: \(p^2 \times p = p^3\), \(q \times q^2 = q^3\)
Answer: \(-\frac{2}{5}p^3q^3\)


Q2: Multiply:

i. \(\left(2x^2-5x+6\right)\) by \(-3x\)

Step 1: Multiply each term of the expression by \(-3x\): \[ -3x \cdot 2x^2 = -6x^3,\quad -3x \cdot (-5x) = +15x^2,\quad -3x \cdot 6 = -18x \] Answer: \(-6x^3 + 15x^2 – 18x\)

ii. \(\left(3 – 2y – y^2\right)\) by \(-4xy\)

Step 1: Multiply each term by \(-4xy\): \[ -4xy \cdot 3 = -12xy,\quad -4xy \cdot (-2y) = +8xy^2,\quad -4xy \cdot (-y^2) = +4xy^3 \] Answer: \(-12xy + 8xy^2 + 4xy^3\)

iii. \(\left(3x^2y – 2xy^2 + 5xy – 6\right)\) by \(4xy\)

Step 1: Multiply each term by \(4xy\): \[ 4xy \cdot 3x^2y = 12x^3y^2,\quad 4xy \cdot (-2xy^2) = -8x^2y^3, \\ 4xy \cdot 5xy = 20x^2y^2,\quad 4xy \cdot (-6) = -24xy \] Answer: \(12x^3y^2 – 8x^2y^3 + 20x^2y^2 – 24xy\)

iv. \(\left(7a^3 – 5ab^2 – 2b^3 + 3ab + 2a – 5\right)\) by \(-3ab^2\)

Step 1: Multiply each term by \(-3ab^2\): \[ -3ab^2 \cdot 7a^3 = -21a^4b^2,\quad -3ab^2 \cdot (-5ab^2) = +15a^2b^4, \\ -3ab^2 \cdot (-2b^3) = +6ab^5,\quad -3ab^2 \cdot 3ab = -9a^2b^3, \\ -3ab^2 \cdot 2a = -6a^2b^2,\quad -3ab^2 \cdot (-5) = +15ab^2 \] Answer: \(-21a^4b^2 + 15a^2b^4 + 6ab^5 – 9a^2b^3 – 6a^2b^2 + 15ab^2\)


Q3: Multiply:

i. \((a + 5)\) by \((a + 4)\)

Using identity: \((a + b)(a + c) = a^2 + (b + c)a + bc\)
\((a + 5)(a + 4) = a^2 + (5 + 4)a + 5 \cdot 4\)
= \(a^2 + 9a + 20\)
Answer: \(a^2 + 9a + 20\)

ii. \((x – 3) by (x + 8)\)

Use distributive law:
= \(x \cdot x + x \cdot 8 + (-3) \cdot x + (-3) \cdot 8\)
= \(x^2 + 8x – 3x – 24\)
= \(x^2 + 5x – 24\)
Answer: \(x^2 + 5x – 24\)

iii. \((y – 4)\) by \((y – 6)\)

Use identity: \((a – b)(a – c) = a^2 – (b + c)a + bc\)
= \(y^2 – (4 + 6)y + 4 \cdot 6\)
= \(y^2 – 10y + 24\)
Answer: \(y^2 – 10y + 24\)

iv. \((z + 1)\) by \((z – 7)\)

Use identity: \((a + b)(a – b) = a^2 – b^2\), but here b ≠ same
= \(z \cdot z + z \cdot (-7) + 1 \cdot z + 1 \cdot (-7)\)
= \(z^2 – 7z + z – 7\)
= \(z^2 – 6z – 7\)
Answer: \(z^2 – 6z – 7\)

v. \((3a – 2b)\) by \((2a + 3b)\)

Use distributive law:
= \(3a \cdot 2a + 3a \cdot 3b + (-2b) \cdot 2a + (-2b) \cdot 3b\)
= \(6a^2 + 9ab – 4ab – 6b^2\)
= \(6a^2 + 5ab – 6b^2\)
Answer: \(6a^2 + 5ab – 6b^2\)

vi. \((5x + 4y)\) by \((2x – 3y)\)

Use distributive law:
= \(5x \cdot 2x + 5x \cdot (-3y) + 4y \cdot 2x + 4y \cdot (-3y)\)
= \(10x^2 – 15xy + 8xy – 12y^2\)
= \(10x^2 – 7xy – 12y^2\)
Answer: \(10x^2 – 7xy – 12y^2\)


Q4: Multiply:

i. \(\left(4x^2+3x-5\right)\) by \(\left(2x+3\right)\)

Step 1: Use distributive property: \[ (4x^2+3x-5)(2x+3) = 4x^2(2x+3) + 3x(2x+3) – 5(2x+3) \]Step 2: Multiply each term: \[ = (8x^3 + 12x^2) + (6x^2 + 9x) – (10x + 15) \]Step 3: Combine like terms: \[ = 8x^3 + 18x^2 – x – 15 \]Answer: \(8x^3 + 18x^2 – x – 15\)

ii. \(\left(3 – 2x + 5x^2\right)\) by \(\left(5x – 4\right)\)

Step 1: Reorder terms: \(5x^2 – 2x + 3\) \[ = (5x^2 – 2x + 3)(5x – 4) \]Step 2: Multiply each term: \[ = 5x^2(5x – 4) – 2x(5x – 4) + 3(5x – 4) \\ = 25x^3 – 20x^2 – 10x^2 + 8x + 15x – 12 \]Step 3: Combine like terms: \[ = 25x^3 – 30x^2 + 23x – 12 \]Answer: \(25x^3 – 30x^2 + 23x – 12\)

iii. \(\left(x^3 – 5x + 3\right)\) by \(\left(2x + 9\right)\)

Step 1: Multiply each term: \[ = x^3(2x + 9) – 5x(2x + 9) + 3(2x + 9) \\ = 2x^4 + 9x^3 – 10x^2 – 45x + 6x + 27 \]Step 2: Combine like terms: \[ = 2x^4 + 9x^3 – 10x^2 – 39x + 27 \]Answer: \(2x^4 + 9x^3 – 10x^2 – 39x + 27\)

iv. \(\left(4x^2 + xy + 9y^2\right)\) by \(\left(2x – 3y\right)\)

Step 1: Multiply each term: \[ = 4x^2(2x – 3y) + xy(2x – 3y) + 9y^2(2x – 3y) \\ = 8x^3 – 12x^2y + 2x^2y – 3xy^2 + 18xy^2 – 27y^3 \]Step 2: Combine like terms: \[ = 8x^3 – 10x^2y + 15xy^2 – 27y^3 \]Answer: \(8x^3 – 10x^2y + 15xy^2 – 27y^3\)


Q5: Multiply:

i. \((4x^2 – 4x + 1)\) by \((2x^2 + x – 2)\)

Using distributive property (each term in the first polynomial multiplied by each term in the second):\[ (4x^2)(2x^2 + x – 2) = 8x^4 + 4x^3 – 8x^2 \\ (-4x)(2x^2 + x – 2) = -8x^3 – 4x^2 + 8x \\ (1)(2x^2 + x – 2) = 2x^2 + x – 2 \]Now add like terms:\[ 8x^4 + (4x^3 – 8x^3) + (-8x^2 – 4x^2 + 2x^2) + (8x + x) – 2 \\ = 8x^4 – 4x^3 – 10x^2 + 9x – 2 \]Answer: \(8x^4 – 4x^3 – 10x^2 + 9x – 2\)

ii. \((3x^2 + 4x – 5)\) by \((4x^2 – 7x + 2)\)

Multiply each term:\[ 3x^2(4x^2 – 7x + 2) = 12x^4 – 21x^3 + 6x^2 \\ 4x(4x^2 – 7x + 2) = 16x^3 – 28x^2 + 8x \\ (-5)(4x^2 – 7x + 2) = -20x^2 + 35x – 10 \]Now combine:\[ 12x^4 + (-21x^3 + 16x^3) + (6x^2 – 28x^2 – 20x^2) + (8x + 35x) – 10 \\ = 12x^4 – 5x^3 – 42x^2 + 43x – 10 \]Answer: \(12x^4 – 5x^3 – 42x^2 + 43x – 10\)

iii. \((4x^2 + 24xy + 3y^2)\) by \((x^2 – xy + y^2)\)

Distribute each term:\[ 4x^2(x^2 – xy + y^2) = 4x^4 – 4x^3y + 4x^2y^2 \\ 24xy(x^2 – xy + y^2) = 24x^3y – 24x^2y^2 + 24xy^3 \\ 3y^2(x^2 – xy + y^2) = 3x^2y^2 – 3xy^3 + 3y^4 \]Now combine:\[ 4x^4 + ( -4x^3y + 24x^3y ) + (4x^2y^2 – 24x^2y^2 + 3x^2y^2) + (24xy^3 – 3xy^3) + 3y^4 \\ = 4x^4 + 20x^3y – 17x^2y^2 + 21xy^3 + 3y^4 \]Answer: \(4x^4 + 20x^3y – 17x^2y^2 + 21xy^3 + 3y^4\)

iv. \((6x^3 – 5x^2 + 4x + 1)\) by \((x^2 + 7x – 1)\)

Distribute each term:\[ 6x^3(x^2 + 7x – 1) = 6x^5 + 42x^4 – 6x^3 \\ -5x^2(x^2 + 7x – 1) = -5x^4 – 35x^3 + 5x^2 \\ 4x(x^2 + 7x – 1) = 4x^3 + 28x^2 – 4x \\ 1(x^2 + 7x – 1) = x^2 + 7x – 1 \]Now add like terms:\[ 6x^5 + (42x^4 – 5x^4) + (-6x^3 – 35x^3 + 4x^3) + (5x^2 + 28x^2 + x^2) + (-4x + 7x) – 1 \\ = 6x^5 + 37x^4 – 37x^3 + 34x^2 + 3x – 1 \]Answer: \(6x^5 + 37x^4 – 37x^3 + 34x^2 + 3x – 1\)

v. \((8x^4 – 3x^2 + 9x – 8)\) by \((2x^2 – 5x + 3)\)

Multiply each term:\[ 8x^4(2x^2 – 5x + 3) = 16x^6 – 40x^5 + 24x^4 \\ -3x^2(2x^2 – 5x + 3) = -6x^4 + 15x^3 – 9x^2 \\ 9x(2x^2 – 5x + 3) = 18x^3 – 45x^2 + 27x \\ -8(2x^2 – 5x + 3) = -16x^2 + 40x – 24 \]Now combine:\[ 16x^6 – 40x^5 + (24x^4 – 6x^4) + (15x^3 + 18x^3) + (-9x^2 – 45x^2 – 16x^2) + (27x + 40x) – 24 \\ = 16x^6 – 40x^5 + 18x^4 + 33x^3 – 70x^2 + 67x – 24 \]Answer: \(16x^6 – 40x^5 + 18x^4 + 33x^3 – 70x^2 + 67x – 24\)

vi. \((3x^5 – 7x^3 + 2x^2 – x + 4)\) by \((x^3 – 2x^2 + 3x – 1)\)

We’ll distribute each term:
Step-by-step multiplication (key terms shown, grouped):
– \(3x^5 \cdot x^3 = 3x^8\)
– \(3x^5 \cdot -2x^2 = -6x^7\)
– \(3x^5 \cdot 3x = 9x^6\)
– \(3x^5 \cdot -1 = -3x^5\)
– \(-7x^3 \cdot x^3 = -7x^6\)
– \(-7x^3 \cdot -2x^2 = 14x^5\)
– \(-7x^3 \cdot 3x = -21x^4\)
– \(-7x^3 \cdot -1 = 7x^3\)
– \(2x^2 \cdot x^3 = 2x^5\)
– \(2x^2 \cdot -2x^2 = -4x^4\)
– \(2x^2 \cdot 3x = 6x^3\)
– \(2x^2 \cdot -1 = -2x^2\)
– \(-x \cdot x^3 = -x^4\)
– \(-x \cdot -2x^2 = 2x^3\)
– \(-x \cdot 3x = -3x^2\)
– \(-x \cdot -1 = x\)
– \(4 \cdot x^3 = 4x^3\)
– \(4 \cdot -2x^2 = -8x^2\)
– \(4 \cdot 3x = 12x\)
– \(4 \cdot -1 = -4\)
Now combine all terms: \[ 3x^8 – 6x^7 + (9x^6 – 7x^6) + (-3x^5 + 14x^5 + 2x^5) + (-21x^4 – 4x^4 – x^4) \\ + (7x^3 + 6x^3 + 2x^3 + 4x^3) + (-2x^2 – 3x^2 – 8x^2) + (x + 12x) – 4 \]Final simplification: \[ 3x^8 – 6x^7 + 2x^6 + 13x^5 – 26x^4 + 19x^3 – 13x^2 + 13x – 4 \]Answer: \(3x^8 – 6x^7 + 2x^6 + 13x^5 – 26x^4 + 19x^3 – 13x^2 + 13x – 4\)


Q6: There are \(\left(3x+5y\right)\) shelves in a library and in each shelf there are \(\left(5x+3y\right)\) books. How many books are there in the library?

Step 1: We are given the number of shelves = \((3x + 5y)\)
Number of books on each shelf = \((5x + 3y)\)
Step 2: Total number of books = (Number of shelves) × (Books per shelf)
⇒ \((3x + 5y)(5x + 3y)\)
Step 3: Apply distributive property: \[ (3x + 5y)(5x + 3y) = 3x(5x + 3y) + 5y(5x + 3y) \]Step 4: Multiply each term:
\(= 3x \cdot 5x + 3x \cdot 3y + 5y \cdot 5x + 5y \cdot 3y\)
\(= 15x^2 + 9xy + 25xy + 15y^2\)
Step 5: Combine like terms:
\(= 15x^2 + (9xy + 25xy) + 15y^2\)
\(= 15x^2 + 34xy + 15y^2\)
Answer: The total number of books in the library is \(15x^2 + 34xy + 15y^2\).


previous
next

Share the Post:

Leave a Comment

Your email address will not be published. Required fields are marked *

Related Posts​

  • Type casting in Java
    The process of converting the value of one data type to another data type is known as typecasting.
  • Identities
    Step by Step solutions of Test Yourself Concise Mathematics ICSE Class-8 Maths chapter 12- Identities by Selina is provided.

Join Our Newsletter

Name
Email
The form has been submitted successfully!
There has been some error while submitting the form. Please verify all form fields again.

Scroll to Top