Fundamental Concepts and Operations on Algebraic Expressions

fundamental concepts and operations on algebraic expressions class 8 rs aggarwal

Step by Step solutions of RS Aggarwal ICSE Class-8 Maths chapter 12- Fundamental Concepts and Operations on Algebraic Expressions by Goyal Brothers Prakashan is provided

Table of Contents

Exercise: 12-B

Q1: Add:

i. \(2ab,\ -7ab,\ \frac{2}{3}ab,\ 9ab\)

Step 1: Group like terms: \[ (2ab – 7ab + \frac{2}{3}ab + 9ab) \]Step 2: Add the coefficients: \[ = (2 – 7 + \frac{2}{3} + 9)ab \]Step 3: Simplify: \[ = (4 + \frac{2}{3})ab = \left(\frac{12}{3} + \frac{2}{3}\right)ab = \frac{14}{3}ab \]Answer: \(\frac{14}{3}ab\)

ii. \(5x^2y,\ -3x^2y,\ \frac{1}{2}x^2y,\ \frac{4}{5}x^2y\)

Step 1: Group like terms: \[ (5x^2y – 3x^2y + \frac{1}{2}x^2y + \frac{4}{5}x^2y) \]Step 2: Add the coefficients: \[ = (5 – 3 + \frac{1}{2} + \frac{4}{5})x^2y \]Step 3: Simplify: \[ = (2 + \frac{1}{2} + \frac{4}{5})x^2y \]Find LCM of 2 and 5: LCM = 10 \[ = \left(2 + \frac{5}{10} + \frac{8}{10}\right)x^2y = \left(2 + \frac{13}{10}\right)x^2y = \left(\frac{20}{10} + \frac{13}{10}\right)x^2y = \frac{33}{10}x^2y \]Answer: \(\frac{33}{10}x^2y\)


Q2: Subtract:

i. \(7xy\) from \(2xy\)

Step 1: Write as: \(2xy – 7xy\)
Step 2: Combine like terms: \(2xy – 7xy = -5xy\)
Answer: \(-5xy\)

ii. \(2ab\) from \(-3ab\)

Step 1: Write as: \(-3ab – 2ab\)
Step 2: Combine like terms: \(-3ab – 2ab = -5ab\)
Answer: \(-5ab\)

iii. \(-3a^2b\) from \(2a^2b\)

Step 1: Write as: \(2a^2b – (-3a^2b)\)
Step 2: Subtracting negative is adding: \(2a^2b + 3a^2b = 5a^2b\)
Answer: \(5a^2b\)

iv. \(-5xy^2\) from \(-3xy^2\)

Step 1: Write as: \(-3xy^2 – (-5xy^2)\)
Step 2: Subtracting negative is adding: \(-3xy^2 + 5xy^2 = 2xy^2\)
Answer: \(2xy^2\)

v. \(-\frac{3}{7}x^2y\) from \(\frac{1}{3}x^2y\)

Step 1: Write as: \(\frac{1}{3}x^2y – (-\frac{3}{7}x^2y)\)
Step 2: Subtracting negative is adding: \[ \frac{1}{3}x^2y + \frac{3}{7}x^2y = \left( \frac{7 + 9}{21} \right)x^2y = \frac{16}{21}x^2y \] Answer: \(\frac{16}{21}x^2y\)


Q3: Add the following expressions:

i. \(3x+8y-5z,\ 7x-9y+6z,\ x-2y-3z,\ z-5x+3y\)

Step 1: Combine like terms for \(x\): \(3x + 7x + x – 5x = 6x\)
Step 2: Combine like terms for \(y\): \(8y – 9y – 2y + 3y = 0y\)
Step 3: Combine like terms for \(z\): \(-5z + 6z – 3z + z = -1z\)
Answer: 6x – z

ii. \(y^2-x^2,\ 2x^2-3y^2,\ 5y^2-3x^2,\ 6x^2+2y^2\)

Step 1: Combine \(x^2\): \(-x^2 + 2x^2 – 3x^2 + 6x^2 = 4x^2\)
Step 2: Combine \(y^2\): \(y^2 – 3y^2 + 5y^2 + 2y^2 = 5y^2\)
Answer: \(4x^2 + 5y^2\)

iii. \(2p+3r+4q,\ 7r+3p-2q,\ q-r-p,\ 5p+4q-8r\)

Step 1: Combine \(p\): \(2p + 3p – p + 5p = 9p\)
Step 2: Combine \(q\): \(4q – 2q + q + 4q = 7q\)
Step 3: Combine \(r\): \(3r + 7r – r – 8r = 1r\)
Answer: 9p + 7q + r

iv. \(7xy+yz-3zx,\ 2yz+zx-5xy,\ 2zx-3yz+4xy\)

Step 1: Combine \(xy\): \(7xy – 5xy + 4xy = 6xy\)
Step 2: Combine \(yz\): \(yz + 2yz – 3yz = 0yz\)
Step 3: Combine \(zx\): \(-3zx + zx + 2zx = 0zx\)
Answer: 6xy

v. \(1-x-x^2-3x^3,\ 2x^2+x^3+3,\ x^2+5x-2,\ x^3-x^2-3x\)

Step 1: Combine constants: \(1 + 3 – 2 = 2\)
Step 2: Combine \(x\): \(-x + 5x – 3x = 1x\)
Step 3: Combine \(x^2\): \(-x^2 + 2x^2 + x^2 – x^2 = x^2\)
Step 4: Combine \(x^3\): \(-3x^3 + x^3 + x^3 = -x^3\)
Answer: \(2 + x – x^3 + x^2\)

vi. \(4z^4-7z^3+2z-5z^2+3,\ 3z^2+4z^3-2z^4-z-5,\ 3z^3+z^2-z-1\)

Step 1: Combine \(z^4\): \(4z^4 – 2z^4 = 2z^4\)
Step 2: Combine \(z^3\): \(-7z^3 + 4z^3 + 3z^3 = 0z^3\)
Step 3: Combine \(z^2\): \(-5z^2 + 3z^2 + z^2 = -1z^2\)
Step 4: Combine \(z\): \(2z – z – z = 0z\)
Step 5: Combine constants: \(3 – 5 – 1 = -3\)
Answer: \(2z^4 – z^2 – 3\)

vii. \(3+5y-4y^2+7y^3,\ -7+2y+3y^3,\ 5-6y-9y^3+2y^2\)

Step 1: Combine constants: \(3 – 7 + 5 = 1\)
Step 2: Combine \(y\): \(5y + 2y – 6y = 1y\)
Step 3: Combine \(y^2\): \(-4y^2 + 2y^2 = -2y^2\)
Step 4: Combine \(y^3\): \(7y^3 + 3y^3 – 9y^3 = 1y^3\)
Answer: \(1 + y – 2y^2 + y^3\)


Q4: Subtract

i. \(3y – 5z\) from \(6z – 4y\)

Step 1: Write as: \((6z – 4y) – (3y – 5z)\)
Step 2: Distribute the minus sign: \(6z – 4y – 3y + 5z\)
Step 3: Combine like terms: \[ -4y – 3y + 6z + 5z = -7y + 11z \] Answer: \(-7y + 11z\)

ii. \(3a – 5b – 2c\) from \(2a – 3b – c\)

Step 1: Write as: \((2a – 3b – c) – (3a – 5b – 2c)\)
Step 2: Distribute: \(2a – 3b – c – 3a + 5b + 2c\)
Step 3: Combine like terms: \[ (2a – 3a) + (-3b + 5b) + (-c + 2c) = -a + 2b + c \] Answer: \(-a + 2b + c\)

iii. \(p^2 – q^2 + 5r^2\) from \(q^2 – p^2 – 2r^2\)

Step 1: Write as: \((q^2 – p^2 – 2r^2) – (p^2 – q^2 + 5r^2)\)
Step 2: Distribute: \(q^2 – p^2 – 2r^2 – p^2 + q^2 – 5r^2\)
Step 3: Combine like terms: \[ -2p^2 + 2q^2 – 7r^2 \] Answer: \(-2p^2 + 2q^2 – 7r^2\)

iv. \(5x^2 + x – 11\) from \(x^2 – 2x + 8\)

Step 1: Write as: \((x^2 – 2x + 8) – (5x^2 + x – 11)\)
Step 2: Distribute: \(x^2 – 2x + 8 – 5x^2 – x + 11\)
Step 3: Combine like terms: \[ -4x^2 – 3x + 19 \] Answer: \(-4x^2 – 3x + 19\)

v. \(1 – x + 2x^2 – x^3\) from \(2x^3 – x^2 + 3x + 2\)

Step 1: Write as: \((2x^3 – x^2 + 3x + 2) – (1 – x + 2x^2 – x^3)\)
Step 2: Distribute: \(2x^3 – x^2 + 3x + 2 – 1 + x – 2x^2 + x^3\)
Step 3: Combine like terms: \[ (2x^3 + x^3) + (-x^2 – 2x^2) + (3x + x) + (2 – 1) = 3x^3 – 3x^2 + 4x + 1 \] Answer: \(3x^3 – 3x^2 + 4x + 1\)

vi. \(7x^3 – 6x^2y + 9xy^2 – 2y^3\) from \(3x^2y – 2x^3 + y^3 – 5xy^2\)

Step 1: Write as: \[ (3x^2y – 2x^3 + y^3 – 5xy^2) – (7x^3 – 6x^2y + 9xy^2 – 2y^3) \] Step 2: Distribute: \[ 3x^2y – 2x^3 + y^3 – 5xy^2 – 7x^3 + 6x^2y – 9xy^2 + 2y^3 \] Step 3: Combine like terms: \[ -9x^3 + 9x^2y – 14xy^2 + 3y^3 \] Answer: \(-9x^3 + 9x^2y – 14xy^2 + 3y^3\)


Q5: Subtract the sum of \(4x^2+7xy+3y^2+1\) and \(2x^2-5xy-2y^2+8\) from \(9x^2-8xy+11y^2\).

Step 1: Add the expressions: \[ (4x^2 + 7xy + 3y^2 + 1) + (2x^2 – 5xy – 2y^2 + 8) \]Step 2: Group like terms: \[ = (4x^2 + 2x^2) + (7xy – 5xy) + (3y^2 – 2y^2) + (1 + 8) \]Step 3: Simplify each group: \[ = 6x^2 + 2xy + y^2 + 9 \]Step 4: Write subtraction as: \[ (9x^2 – 8xy + 11y^2) – (6x^2 + 2xy + y^2 + 9) \]Step 5: Distribute negative sign: \[ = 9x^2 – 8xy + 11y^2 – 6x^2 – 2xy – y^2 – 9 \]Step 6: Group like terms: \[ = (9x^2 – 6x^2) + (-8xy – 2xy) + (11y^2 – y^2) – 9 \]Step 7: Simplify each group: \[ = 3x^2 – 10xy + 10y^2 – 9 \]Answer: \(3x^2 – 10xy + 10y^2 – 9\)


Q6: What must be added to \(2x^2+6x-5\) to get \(3x^2-2x+6\)?

Let the required expression to be added be \( A(x) \)
Step 1: Let the expression to be added be \( A(x) \).
We know that:
\[ 2x^2 + 6x – 5 + A(x) = 3x^2 – 2x + 6 \]Step 2: Transpose \(2x^2 + 6x – 5\) to RHS by subtracting it from both sides: \[ A(x) = (3x^2 – 2x + 6) – (2x^2 + 6x – 5) \]Step 3: Open the brackets carefully: \[ A(x) = 3x^2 – 2x + 6 – 2x^2 – 6x + 5 \]Step 4: Combine like terms:
\(3x^2 – 2x^2 = x^2\)
\(-2x – 6x = -8x\)
\(6 + 5 = 11\)
So, \[ A(x) = x^2 – 8x + 11 \]Answer: \(x^2 – 8x + 11\)


Q7: What must be added to \(4-3x+9x^2\) to get \(3-4x^2-x^3\)?

Step 1: Let the required expression to be added be \( A(x) \).
Then, according to the question:
\(4 – 3x + 9x^2 + A(x) = 3 – 4x^2 – x^3\)
Step 2: To find \( A(x) \), subtract \(4 – 3x + 9x^2\) from \(3 – 4x^2 – x^3\) \[ A(x) = (3 – 4x^2 – x^3) – (4 – 3x + 9x^2) \]Step 3: Remove brackets and distribute the negative sign: \[ A(x) = 3 – 4x^2 – x^3 – 4 + 3x – 9x^2 \]Step 4: Combine like terms:
Constants: \(3 – 4 = -1\)
x terms: \(3x\)
\(x^2\) terms: \(-4x^2 – 9x^2 = -13x^2\)
\(x^3\) term: \(-x^3\)
So, \[ A(x) = -x^3 – 13x^2 + 3x – 1 \]Answer: \(-x^3 – 13x^2 + 3x – 1\)


Q8: What must be subtracted from \(3x^2y-2xy^2+7x-2y\) to get \(7xy^2-5x^2y-3x+3y\)?

Let the required expression be A.
Step 1: Let the expression to be subtracted = A
Then,
\(3x^2y – 2xy^2 + 7x – 2y – A = 7xy^2 – 5x^2y – 3x + 3y\)
Step 2: Transpose the equation to find A:
⇒ \(-A = 7xy^2 – 5x^2y – 3x + 3y – (3x^2y – 2xy^2 + 7x – 2y)\)
Step 3: Open the brackets and change signs of the second expression:
⇒ \(-A = 7xy^2 – 5x^2y – 3x + 3y – 3x^2y + 2xy^2 – 7x + 2y\)
Step 4: Combine like terms:
⇒ \(-A = (-5x^2y – 3x^2y) + (7xy^2 + 2xy^2) + (-3x – 7x) + (3y + 2y)\)
⇒ \(-A = -8x^2y + 9xy^2 – 10x + 5y\)
Step 5: Multiply both sides by -1:
⇒ \(A = 8x^2y – 9xy^2 + 10x – 5y\)
Answer: The required expression is \(8x^2y – 9xy^2 + 10x – 5y\).


Q9: What must be subtracted from \(a^2+b^2+c^2-3abc\) to get \(2a^2-b^2-3c^2+abc\)?

Let the required expression be \(x\)
Step 1:
According to the question, \[ (a^2 + b^2 + c^2 – 3abc) – x = 2a^2 – b^2 – 3c^2 + abc \]Step 2:
Transpose \(x\) to RHS and the given expression to LHS: \[ x = (a^2 + b^2 + c^2 – 3abc) – (2a^2 – b^2 – 3c^2 + abc) \]Step 3:
Remove brackets and apply subtraction: \[ x = a^2 + b^2 + c^2 – 3abc – 2a^2 + b^2 + 3c^2 – abc \]Step 4:
Now combine like terms: \[ x = (a^2 – 2a^2) + (b^2 + b^2) + (c^2 + 3c^2) + (-3abc – abc) \\ x = -a^2 + 2b^2 + 4c^2 – 4abc \]Answer: \(-a^2 + 2b^2 + 4c^2 – 4abc\)


Q10: Subtract \(a^3-3a^2\) from \(b^3-3b^2\).

Step 1: Write the expression in subtraction form.
⇒ \((b^3 – 3b^2) – (a^3 – 3a^2)\)
Step 2: Remove brackets carefully. Remember, subtracting a bracket means changing the sign of every term inside it.
⇒ \(b^3 – 3b^2 – a^3 + 3a^2\)
Step 3: Rearrange the terms in standard form (group like terms if any).
⇒ \(b^3 – 3b^2 – a^3 + 3a^2\)
Answer: \(b^3 – 3b^2 – a^3 + 3a^2\)


Q11: If \(\left(2x-3y\right)\) units, \(\left(7x+y\right)\) units, \(\left(x+12y\right)\) units and \(\left(3y-4x\right)\) units are the lengths of the sides of a quadrilateral, then find the perimeter of the quadrilateral.

Perimeter of the quadrilateral = Sum of all its four sides
Step 1: List all the sides:
Side 1 = \(2x – 3y\)
Side 2 = \(7x + y\)
Side 3 = \(x + 12y\)
Side 4 = \(3y – 4x\)
Step 2: Add all the sides:
Perimeter = \((2x – 3y) + (7x + y) + (x + 12y) + (3y – 4x)\)
Step 3: Group like terms:
= \((2x + 7x + x – 4x) + (-3y + y + 12y + 3y)\)
= \((6x) + (13y)\)
Answer: The perimeter of the quadrilateral is \(6x + 13y\) units.


previous
next

Share the Post:

Leave a Comment

Your email address will not be published. Required fields are marked *

Related Posts​

  • Counters and Accumulators in Java
    Counters keep track of how many times an action happens in a program while Accumulators add up values to find a total. Both help Java programs remember and calculate changing numbers during execution.
  • Assignment Operator in Java
    Assignment operators in Java are used to assign or update values in variables. They make code simpler by combining operations and assignments.

Join Our Newsletter

Name
Email
The form has been submitted successfully!
There has been some error while submitting the form. Please verify all form fields again.

Scroll to Top