Fractions

fraction class7

Step by Step solutions of RS Aggarwal ICSE Class-7 Maths chapter 2- Fractions by Goyal Brothers Prakashan is provided.

Table of Contents

Exercise: 2-C

Q1: \(1\frac{2}{3}+\frac{5}{6}\ of\ \frac{24}{25}\)

Step 1: Convert the mixed number to an improper fraction:
\(1\frac{2}{3} = \frac{5}{3}\)

Step 2: Calculate \( \frac{5}{6} \ of \ \frac{24}{25} \):
\(\frac{5}{6} \times \frac{24}{25} = \frac{120}{150} = \frac{4}{5}\)

Step 3: Add \( \frac{5}{3} \) and \( \frac{4}{5} \):
To add, find a common denominator (LCM of 3 and 5 is 15):
\(\frac{5}{3} = \frac{25}{15}, \quad \frac{4}{5} = \frac{12}{15}\)
Add the fractions:
\(\frac{25}{15} + \frac{12}{15} = \frac{37}{15}\)

Step 4: Convert the improper fraction back to a mixed number:
\(\frac{37}{15} = 2\frac{7}{15}\)

Answer: \( 2\frac{7}{15} \)


Q2: \(\frac{1}{3}\ of\ 4\frac{2}{3}\div2\frac{1}{3}\times1\frac{1}{2}\)

Step 1: Convert the mixed numbers to improper fractions:
\(4\frac{2}{3} = \frac{14}{3}, \quad 2\frac{1}{3} = \frac{7}{3}, \quad 1\frac{1}{2} = \frac{3}{2}\)

Step 2: Calculate \( \frac{1}{3} \ of \ 4\frac{2}{3} \):
\(\frac{1}{3} \times \frac{14}{3} = \frac{14}{9}\)

Step 3: Perform the division:
\(\frac{14}{9} \div \frac{7}{3} = \frac{14}{9} \times \frac{3}{7} = \frac{42}{63} = \frac{2}{3}\)

Step 4: Multiply by \( 1\frac{1}{2} \):
\(\frac{2}{3} \times \frac{3}{2} = 1\)

Answer: \( 1 \)


Q3: \(2\frac{1}{4}+1\frac{1}{6}-1\frac{2}{3}\div2\frac{2}{3}\ of\ 3\frac{3}{4}\)

Step 1: Convert mixed numbers to improper fractions
\(\frac{9}{4} + \frac{7}{6} – \frac{5}{3} \div \left(\frac{8}{3} \times \frac{15}{4}\right)\)

Step 2: Calculate \( 2\frac{2}{3} \ of \ 3\frac{3}{4} \):
\(\frac{8}{3} \times \frac{15}{4} = \frac{120}{12} = 10\)

Step 3: Now divide \(1\frac{2}{3}\) by 10
\(\frac{5}{3} \div 10 = \frac{5}{3} \times \frac{1}{10} = \frac{5}{30} = \frac{1}{6}\)

Step 4: Addition and subtraction
\(\frac{9}{4} + \frac{7}{6} – \frac{1}{6} = 3\frac{1}{4}\)

Answer: \(3\frac{1}{4}\)


Q4: \(1\frac{1}{2}\times2\frac{3}{4}\div1\frac{4}{7}\ of\ 2\frac{5}{8}\)

Step 1: Convert mixed numbers to improper fractions
\(\frac{3}{2} \times \frac{11}{4} \div \left(\frac{11}{7} \times \frac{21}{8}\right)\)

Step 2: Step 2: Calculate \( 1\frac{4}{7} \ of \ 2\frac{5}{8} \):
\(\frac{11}{7} \times \frac{21}{8} = \frac{231}{56} = \frac{4}{7}\)

Step 3: Now divide \(2\frac{3}{4}\) by the result from Step 2
\(\frac{11}{4} \div \frac{4}{7} = \frac{11}{4} \times \frac{7}{4} = \frac{77}{16}\)

Step 4: Multiply by \(1\frac{1}{2}\)
\(\frac{3}{2} \times \frac{4}{7} = \frac{6}{7}\)

Answer: \( \frac{6}{7}\)


Q5: \(\left(2\frac{3}{4}+1\frac{5}{6}\right)\div2\frac{1}{5}\ of\ 3\frac{1}{3}\)

Step 1: Convert mixed numbers to improper fractions
\(\frac{11}{4} + \frac{11}{6} \div \left(\frac{11}{5} \times \frac{10}{3}\right)\)

Step 2: First add \(2\frac{3}{4}\) and \(1\frac{5}{6}\)
\(\frac{11}{4} + \frac{11}{6} = \frac{33}{12} + \frac{22}{12} = \frac{55}{12}\)

Step 3: Step 3: Calculate \( 2\frac{1}{5} \ of \ 3\frac{1}{3} \):
\(\frac{11}{5} \times \frac{10}{3} = \frac{110}{15} = \frac{22}{3}\)

Step 4: Now divide \(\frac{55}{12}\) by \(\frac{22}{3}\)
\(\frac{55}{12} \div \frac{22}{3} = \frac{55}{12} \times \frac{3}{22} = \frac{5}{8}\)

Answer: \( \frac{5}{8} \)


Q6: \(\frac{7}{15}\ of\ \left(\frac{2}{3}+\frac{7}{12}\right)\div\left(\frac{5}{6}-\frac{3}{5}\right)\)

Step 1: Add inside the brackets
\(\frac{2}{3} + \frac{7}{12} = \frac{8}{12} + \frac{7}{12} = \frac{15}{12} = \frac{5}{4}\)

Step 2: Step 2: Calculate \( \frac{7}{15} \ of \ \frac{5}{4} \):
\(\frac{7}{15} \times \frac{5}{4} = \frac{35}{60} = \frac{7}{12}\)

Step 3: Subtract inside the second bracket
\(\frac{5}{6} – \frac{3}{5} = \frac{25}{30} – \frac{18}{30} = \frac{7}{30}\)

Step 4: Now divide \(\frac{7}{12}\) by \(\frac{7}{30}\)
\(\frac{7}{12} \div \frac{7}{30} = \frac{7}{12} \times \frac{30}{7} = \frac{5}{2}\)

Answer: \( \frac{5}{2} \)


Q7: \(\left(22\div5\frac{1}{2}\right)\div2\frac{1}{5}\ of\ 3\frac{1}{3}+1\frac{5}{11}\)

Step 1: Convert mixed numbers to improper fractions
\(22 \div \frac{11}{2} \div \left(\frac{11}{5} \times \frac{10}{3}\right) + \frac{16}{11}\)

Step 2:Solve Bracket
\(22 \div \frac{11}{2} = 22 \times \frac{2}{11} = \frac{44}{11} = 4\)

Step 3: Step 3: Calculate \( 2\frac{1}{5} \ of \ 3\frac{1}{3} \):
\(\frac{11}{5} \times \frac{10}{3} = \frac{110}{15} = \frac{22}{3}\)

Step 4: Now divide 4 by \(\frac{22}{3}\)
\(4 \div \frac{22}{3} = 4 \times \frac{3}{22} = \frac{12}{22} = \frac{6}{11}\)

Step 5: Add \(1\frac{5}{11}\)
\(\frac{6}{11} + \frac{16}{11} = \frac{22}{11} = 2\)

Answer: \( 2 \)


Q8: \(6\frac{1}{3}\div\left(2\frac{1}{5}+3\frac{1}{2}\right)\ of\ 3\frac{1}{3}\)

Step 1: Convert mixed numbers to improper fractions
\(6\frac{1}{3} = \frac{19}{3}, 2\frac{1}{5} = \frac{11}{5}, 3\frac{1}{2} = \frac{7}{2}, 3\frac{1}{3} = \frac{10}{3}\)

Step 2: Add \(2\frac{1}{5} + 3\frac{1}{2}\)
\(\frac{11}{5} + \frac{7}{2} = \frac{22}{10} + \frac{35}{10} = \frac{57}{10}\)

Step 3: Step 3: Calculate \( \frac{57}{10} \ of \ 3\frac{1}{3} \):
\(\frac{57}{10} \times \frac{10}{3} = \frac{570}{30} = \frac{19}{1}\)

Step 4: Now divide \(\frac{19}{3}\) by 19
\(\frac{19}{3} \div 19 = \frac{19}{3} \times \frac{1}{19} = \frac{1}{3}\)

Answer: \( \frac{1}{3} \)


previous
next

Share the Post:

Leave a Comment

Your email address will not be published. Required fields are marked *

Related Posts​

  • Type casting in Java
    The process of converting the value of one data type to another data type is known as typecasting.
  • Identities
    Step by Step solutions of Test Yourself Concise Mathematics ICSE Class-8 Maths chapter 12- Identities by Selina is provided.

Join Our Newsletter

Name
Email
The form has been submitted successfully!
There has been some error while submitting the form. Please verify all form fields again.

Scroll to Top