Fractions

fraction class7

Step by Step solutions of RS Aggarwal ICSE Class-7 Maths chapter 2- Fractions by Goyal Brothers Prakashan is provided.

Table of Contents

Exercise: 2-B

Q1: Find the reciprocal of:

1. \( \frac{13}{17} \)
The reciprocal of \( \frac{a}{b} \) is \( \frac{b}{a} \).
The reciprocal of \( \frac{13}{17} \) is \( \frac{17}{13} \).

2. \( \frac{3}{313} \)
The reciprocal of \( \frac{3}{313} \) is \( \frac{313}{3} \).

3. \( 217 \)
The reciprocal of \( 217 \) is \( \frac{1}{217} \).

4. \( \frac{1}{1024} \)
The reciprocal of \( \frac{1}{1024} \) is \( 1024 \).

5. \( 3\frac{1}{3} \)
Convert mixed number to improper fraction: \( 3\frac{1}{3} = \frac{10}{3} \).
The reciprocal of \( \frac{3}{10} \).

6. \( 11\frac{1}{11} \)
Convert mixed number to improper fraction: \( 11\frac{1}{11} = \frac{122}{11} \).
The reciprocal of \( \frac{11}{122} \).

7. \( 1\frac{1}{2} \)
Convert mixed number to improper fraction: \( 1\frac{1}{2} = \frac{3}{2} \).
The reciprocal of \( \frac{2}{3} \).

8. \( 125\frac{1}{8} \)
Convert mixed number to improper fraction: \( 125\frac{1}{8} = \frac{1001}{8} \).
The reciprocal of \( \frac{8}{1001} \).


Q2: Divide:

1. \( \frac{1}{2} \div \frac{1}{3} \)
Step 1: Convert division to multiplication by the reciprocal of the second fraction: \[ \frac{1}{2} \div \frac{1}{3} = \frac{1}{2} \times \frac{3}{1} \] Step 2: Multiply the fractions: \[ \frac{1}{2} \times \frac{3}{1} = \frac{3}{2} \] Answer: \( \frac{3}{2} \)

2. \( \frac{3}{14} \div \frac{11}{42} \)
Step 1: Convert division to multiplication by the reciprocal of the second fraction: \[ \frac{3}{14} \div \frac{11}{42} = \frac{3}{14} \times \frac{42}{11} \] Step 2: Multiply the fractions: \[ \frac{3 \times 42}{14 \times 11} = \frac{126}{154} \] Step 3: Simplify the fraction: \[ \frac{126}{154} = \frac{9}{11} \] Answer: \( \frac{9}{11} \)

3. \( 1 \div 6\frac{2}{3} \)
Step 1: Convert the mixed number to an improper fraction: \[ 6\frac{2}{3} = \frac{20}{3} \] Step 2: Convert division to multiplication by the reciprocal of the second number: \[ 1 \div \frac{20}{3} = 1 \times \frac{3}{20} \] Step 3: Multiply: \[ 1 \times \frac{3}{20} = \frac{3}{20} \] Answer: \( \frac{3}{20} \)

4. \( 13\frac{1}{3} \div 10 \)
Step 1: Convert the mixed number to an improper fraction: \[ 13\frac{1}{3} = \frac{40}{3} \] Step 2: Convert division to multiplication by the reciprocal of the second number: \[ \frac{40}{3} \div 10 = \frac{40}{3} \times \frac{1}{10} \] Step 3: Multiply the fractions: \[ \frac{40 \times 1}{3 \times 10} = \frac{40}{30} \] Step 4: Simplify: \[ \frac{40}{30} = \frac{4}{3} \] Answer: \( \frac{4}{3} \)

5. \( 12\frac{1}{12} \div \frac{5}{36} \)
Step 1: Convert the mixed number to an improper fraction: \[ 12\frac{1}{12} = \frac{145}{12} \] Step 2: Convert division to multiplication by the reciprocal of the second fraction: \[ \frac{145}{12} \div \frac{5}{36} = \frac{145}{12} \times \frac{36}{5} \] Step 3: Multiply the fractions: \[ \frac{145 \times 36}{12 \times 5} = \frac{5220}{60} \] Step 4: Simplify: \[ \frac{5220}{60} = 87 \] Answer: \( 87 \)

6. \( \frac{13}{46} \div 2\frac{1}{11} \)
Step 1: Convert the mixed number to an improper fraction: \[ 2\frac{1}{11} = \frac{23}{11} \] Step 2: Convert division to multiplication by the reciprocal of the second fraction: \[ \frac{13}{46} \div \frac{23}{11} = \frac{13}{46} \times \frac{11}{23} \] Step 3: Multiply the fractions: \[ \frac{13 \times 11}{46 \times 23} = \frac{143}{1058} \] Answer: \( \frac{143}{1058} \)

7. \( \frac{20}{31} \div 54 \)
Step 1: Convert division to multiplication by the reciprocal of \( 54 \): \[ \frac{20}{31} \div 54 = \frac{20}{31} \times \frac{1}{54} \] Step 2: Multiply: \[ \frac{20 \times 1}{31 \times 54} = \frac{20}{1674} \] Step 3: Simplify: \[ \frac{20}{1674} = \frac{10}{837} \] Answer: \( \frac{10}{837} \)

8. \( 9\frac{4}{5} \div 3\frac{23}{25} \)
Step 1: Convert the mixed numbers to improper fractions: \[ 9\frac{4}{5} = \frac{49}{5}, \quad 3\frac{23}{25} = \frac{98}{25} \] Step 2: Convert division to multiplication by the reciprocal of the second fraction: \[ \frac{49}{5} \div \frac{98}{25} = \frac{49}{5} \times \frac{25}{98} \] Step 3: Multiply the fractions: \[ \frac{49 \times 25}{5 \times 98} = \frac{1225}{490} \] Step 4: Simplify: \[ \frac{1225}{490} = \frac{5}{2} = 2\frac{1}{2} \] Answer: \( 2\frac{1}{2} \)

9. \( 32\frac{1}{2} \div 8\frac{3}{4} \)
Step 1: Convert the mixed numbers to improper fractions: \[ 32\frac{1}{2} = \frac{65}{2}, \quad 8\frac{3}{4} = \frac{35}{4} \] Step 2: Convert division to multiplication by the reciprocal of the second fraction: \[ \frac{65}{2} \div \frac{35}{4} = \frac{65}{2} \times \frac{4}{35} \] Step 3: Multiply the fractions: \[ \frac{65 \times 4}{2 \times 35} = \frac{260}{70} \] Step 4: Simplify: \[ \frac{260}{70} = \frac{26}{7} = 3\frac{5}{7} \] Answer: \( 3\frac{5}{7} \)

10. \( 8\frac{1}{21} \div 1\frac{6}{7} \)
Step 1: Convert the mixed numbers to improper fractions: \[ 8\frac{1}{21} = \frac{169}{21}, \quad 1\frac{6}{7} = \frac{13}{7} \] Step 2: Convert division to multiplication by the reciprocal of the second fraction: \[ \frac{169}{21} \div \frac{13}{7} = \frac{169}{21} \times \frac{7}{13} \] Step 3: Multiply the fractions: \[ \frac{169 \times 7}{21 \times 13} = \frac{1183}{273} \] Step 4: Simplify: \[ \frac{1183}{273} = \frac{13}{3} = 4\frac{1}{3} \] Answer: \( 4\frac{1}{3} \)

11. \( 6\frac{3}{16} \div 3\frac{1}{7} \)
Step 1: Convert the mixed numbers to improper fractions: \[ 6\frac{3}{16} = \frac{99}{16}, \quad 3\frac{1}{7} = \frac{22}{7} \] Step 2: Convert division to multiplication by the reciprocal of the second fraction: \[ \frac{99}{16} \div \frac{22}{7} = \frac{99}{16} \times \frac{7}{22} \] Step 3: Multiply the fractions: \[ \frac{99 \times 7}{16 \times 22} = \frac{693}{352} = \frac{63}{32} \] Step 4: Simplify: \[ \frac{63}{32} = 1\frac{31}{32} \] Answer: \( 1\frac{31}{32} \)

12. \( 3\frac{11}{15} \div 19\frac{3}{5} \)
Step 1: Convert the mixed numbers to improper fractions: \[ 3\frac{11}{15} = \frac{56}{15}, \quad 19\frac{3}{5} = \frac{98}{5} \] Step 2: Convert division to multiplication by the reciprocal of the second fraction: \[ \frac{56}{15} \div \frac{98}{5} = \frac{56}{15} \times \frac{5}{98} \] Step 3: Multiply the fractions: \[ \frac{56 \times 5}{15 \times 98} = \frac{280}{1470} \] Step 4: Simplify: \[ \frac{280}{1470} = \frac{4}{21} \] Answer: \( \frac{4}{21} \)


Q3: By what fraction should \( \frac{9}{35} \) be multiplied to get \( \frac{7}{15} \)?

Step 1:
Let \( x \) be the required fraction. \[ \frac{9}{35} \times x = \frac{7}{15} \]Step 2:
Solve for \( x \): \[ x = \frac{7}{15} \div \frac{9}{35} = \frac{7}{15} \times \frac{35}{9} = \frac{245}{135} = \frac{49}{27} = 1\frac{22}{27} \] Answer: \( 1\frac{22}{27} \)


Q4: If the cost of \( 6\frac{1}{4} \) m of cloth is ₹\( 1421\frac{7}{8} \), find the cost of 1 metre of cloth.

Step 1:
Convert mixed numbers to improper fractions: \[ 6\frac{1}{4} = \frac{25}{4}, \quad 1421\frac{7}{8} = \frac{11375}{8} \]Step 2:
Find the cost of 1 metre of cloth by dividing total cost by the length: \[ \text{Cost per meter} = \frac{11375}{8} \div \frac{25}{4} = \frac{11375}{8} \times \frac{4}{25} = \frac{45500}{200} = \frac{455}{2} = 227\frac{1}{2} \] Answer: ₹\(227\frac{1}{2}\)


Q5: How many pieces of length \( 3\frac{5}{7} \) m each can be cut from a 52 m long?

Step 1:
Convert mixed number to improper fraction: \( 3\frac{5}{7} = \frac{26}{7} \).
Divide total length by the length of each piece: \[ \text{Number of pieces} = \frac{52}{\frac{26}{7}} = 52 \times \frac{7}{26} = 14 \] Answer: 14 pieces


Q6: A log of wood \( 6\frac{2}{7} \) m in length is cut into 11 pieces. What is the length of each piece?

Step 1:
Convert mixed number to improper fraction: \( 6\frac{2}{7} = \frac{44}{7} \).
Divide the total length by the number of pieces: \[ \text{Length of each piece} = \frac{44}{7} \div 11 = \frac{44}{7} \times \frac{1}{11} = \frac{44}{77} = \frac{4}{7} \] Answer: \( \frac{4}{7} \) m


Q7: A car covers \( 641\frac{1}{4} \) km in \( 43\frac{1}{8} \) litres of fuel. How much distance can this car cover in 1 litre of fuel?

Step 1:
Convert mixed numbers to improper fractions: \[ 641\frac{1}{4} = \frac{2565}{4}, \quad 43\frac{1}{8} = \frac{345}{8} \]Step 2:
To find the distance per litre, divide the total distance by the total fuel consumption: \[ \text{Distance per litre} = \frac{2565}{4} \div \frac{345}{8} = \frac{2565}{4} \times \frac{8}{345} = \frac{20520}{1380} = \frac{342}{23} = 14\frac{20}{23} \text{ km} \] Answer: \(14\frac{20}{23}\) km per litre


Q8: The area of a rectangular plot of land is \( 817\frac{4}{5} \) sq. m. If its breadth is \( 21\frac{3}{4} \) m, find its length.

Step 1:
Convert mixed numbers to improper fractions: \[ 817\frac{4}{5} = \frac{4094}{5}, \quad 21\frac{3}{4} = \frac{87}{4} \]Step 2:
Use the formula for the area of a rectangle: Area = Length × Breadth.
To find the length, divide the area by the breadth: \[ \text{Length} = \frac{4094}{5} \div \frac{87}{4} = \frac{4094}{5} \times \frac{4}{87} = \frac{16376}{435} = \frac{188}{5} = 37\frac{3}{5} \text{ m} \] Answer: \(37\frac{3}{5}\) m


Q9: The area of a sheet of paper is \( 623\frac{7}{10} \) sq. cm. If its length is \( 29\frac{7}{10} \) cm, find its width.

Step 1:
Convert mixed numbers to improper fractions: \[ 623\frac{7}{10} = \frac{6237}{10}, \quad 29\frac{7}{10} = \frac{297}{10} \]Step 2:
Use the formula for the area of a rectangle: Area = Length × Width.
To find the width, divide the area by the length: \[ \text{Width} = \frac{6237}{10} \div \frac{297}{10} = \frac{6237}{10} \times \frac{10}{297} = \frac{6237}{297} = 21 \text{ cm} \] Answer: 21 cm


Q10: A bundle of 500 sheets of paper has a net weight of \( 2\frac{3}{10} \) kg. Find the weight of 1 sheet of paper.

Step 1:
Convert the mixed number to an improper fraction: \[ 2\frac{3}{10} = \frac{23}{10} \]Step 2:
To find the weight of 1 sheet, divide the total weight by the number of sheets: \[ \text{Weight of 1 sheet} = \frac{23}{10} \div 500 = \frac{23}{10} \times \frac{1}{500} = \frac{23}{5000} = 0.0046 \text{ kg} \] Answer: \(\frac{23}{5000}\) kg = 0.0046 kg = 4.6 g


Q11: A car travels \( 283\frac{1}{2} \) km in \( 4\frac{2}{3} \) hours. How does this car go in 1 hour, travelling at the same speed?

Step 1:
Convert mixed numbers to improper fractions: \[ 283\frac{1}{2} = \frac{567}{2}, \quad 4\frac{2}{3} = \frac{14}{3} \]Step 2:
To find the speed per hour, divide the total distance by the total time: \[ \text{Speed} = \frac{567}{2} \div \frac{14}{3} = \frac{567}{2} \times \frac{3}{14} = \frac{1701}{28} = \frac{243}{4} = 60\frac{3}{4}\ \text{ km/hr} \] Answer: \(60\frac{3}{4}\) km/hr or 60.75 km/hr


Q12: The product of two fractions is \( 8\frac{7}{25} \). If one of them is \( 3\frac{1}{15} \), find the other.

Step 1:
Convert mixed numbers to improper fractions: \[ 8\frac{7}{25} = \frac{207}{25}, \quad 3\frac{1}{15} = \frac{46}{15} \]Step 2:
Let the other fraction be \( x \). So, \[ \frac{46}{15} \times x = \frac{207}{25} \] Solve for \( x \): \[ x = \frac{207}{25} \div \frac{46}{15} = \frac{207}{25} \times \frac{15}{46} = \frac{207 \times 15}{25 \times 46} = \frac{3105}{1150} = \frac{27}{10} = 2\frac{7}{10} \] Answer: \( 2\frac{7}{10} \)


previous
next

Share the Post:

Leave a Comment

Your email address will not be published. Required fields are marked *

Related Posts​

  • Type casting in Java
    The process of converting the value of one data type to another data type is known as typecasting.
  • Identities
    Step by Step solutions of Test Yourself Concise Mathematics ICSE Class-8 Maths chapter 12- Identities by Selina is provided.

Join Our Newsletter

Name
Email
The form has been submitted successfully!
There has been some error while submitting the form. Please verify all form fields again.

Scroll to Top