Loading web-font TeX/Main/Regular

Fractions

fraction class7

Table of Contents

Exercise: 2-A

Find the product:

Q1: \frac{5}{6} \times \frac{3}{7}

Step 1:
Write the multiplication of two fractions: \frac{5}{6} \times \frac{3}{7}

Step 2:
Multiply the numerators and the denominators: = \frac{5\times3}{6\times7} = \frac{15}{42}
Step 3:
Simplify the fraction by dividing numerator and denominator by 3: = \frac{15\div3}{42\div3} = \frac{5}{14}
Answer: \frac{5}{14}


Q2: \frac{7}{18} \times \frac{9}{14}

Step 1:
Write the multiplication of two fractions: \frac{7}{18} \times \frac{9}{14}

Step 2:
Multiply the numerators and the denominators: = \frac{7\times9}{18\times14} = \frac{63}{252}
Step 3:
Simplify the fraction by dividing numerator and denominator by 9: = \frac{63\div9}{252\div9} = \frac{7}{28}
Step 4:
Simplify further by dividing by 7: = \frac{7\div7}{28\div7} = \frac{1}{4}
Answer: \frac{1}{4}


Q3: 28 \times \frac{7}{8}

Step 1:
Write the multiplication: 28 \times \frac{7}{8}

Step 2:
Convert 28 into fraction form: = \frac{28}{1} \times \frac{7}{8}
Step 3:
Multiply the numerators and denominators: = \frac{28\times7}{1\times8} = \frac{196}{8}
Step 4:
Simplify by dividing numerator and denominator by 4: = \frac{196\div4}{8\div4} = \frac{49}{2}
Step 5:
Convert into mixed fraction: = 24\frac{1}{2}
Answer: 24\frac{1}{2}


Q4: 7 \times \frac{1}{7}

Step 1:
Write the multiplication: 7 \times \frac{1}{7}

Step 2:
Multiply numerator and denominator: = \frac{7\times1}{7} = \frac{7}{7}
Step 3:
Simplify: = 1
Answer: 1


Q5: 2\frac{1}{25} \times \frac{5}{17}

Step 1:
Convert mixed fraction to improper fraction: 2\frac{1}{25} = \frac{(2\times25)+1}{25} = \frac{51}{25}

Step 2:
Multiply the two fractions: \frac{51}{25} \times \frac{5}{17}
Step 3:
Multiply numerators and denominators: = \frac{51\times5}{25\times17} = \frac{255}{425}
Step 4:
Simplify the fraction by dividing by 85: = \frac{255\div85}{425\div85} = \frac{3}{5}
Answer: \frac{3}{5}


Q6: 1\frac{1}{13} \times 7\frac{3}{7}

Step 1:
Convert mixed fractions to improper fractions: 1\frac{1}{13} = \frac{14}{13}, \quad 7\frac{3}{7} = \frac{52}{7}

Step 2:
Multiply the two fractions: \frac{14}{13} \times \frac{52}{7}
Step 3:
Multiply numerators and denominators: = \frac{14\times52}{13\times7} = \frac{728}{91}
Step 4:
Convert into mixed fraction:
Divide 728 by 91: 728 \div 91 = 8 \text{ remainder } 0
So, = 8
Answer: 8


Q7: \frac{4}{17} \times 7\frac{1}{12}

Step 1:
First, convert the mixed number into an improper fraction: 7\frac{1}{12} = \frac{7\times12 + 1}{12} = \frac{85}{12}

Step 2:
Now, multiply the two fractions: \frac{4}{17} \times \frac{85}{12}
Step 3:
Multiply the numerators and denominators: = \frac{4\times85}{17\times12} = \frac{340}{204}
Step 4:
Simplify the fraction:
Divide numerator and denominator by 68: = \frac{5}{3}
Step 5:
Convert to mixed fraction if needed: \frac{5}{3} = 1\frac{2}{3}
Answer: 1\frac{2}{3}


Q8: 7\frac{1}{4} \times \frac{7}{58} \times 1\frac{11}{21}

Step 1:
Convert mixed fractions to improper fractions: 7\frac{1}{4} = \frac{29}{4}, \quad 1\frac{11}{21} = \frac{32}{21}

Step 2:
Multiply all three fractions: \frac{29}{4} \times \frac{7}{58} \times \frac{32}{21}
Step 3:
Simplify before multiplying:
29 and 58 have common factor 29: = \frac{1}{2}
Thus, \frac{1}{4} \times \frac{7}{2} \times \frac{32}{21}
Step 4:
Multiply numerators and denominators: = \frac{1\times7\times32}{4\times2\times21} = \frac{224}{168}
Step 5:
Simplify by dividing by 56: = \frac{224\div56}{168\div56} = \frac{4}{3}
Step 6:
Convert into mixed fraction: = 1\frac{1}{3}
Answer: 1\frac{1}{3}


Q9: \frac{1}{19} \times 91 \times 5\frac{11}{13}

Step 1:
Convert mixed fraction to improper fraction: 5\frac{11}{13} = \frac{76}{13}

Step 2:
Multiply all numbers:
First simplify \frac{1}{19} \times 91: \frac{1}{19} \times 91 = \frac{91}{19} = 4\frac{15}{19}
Step 3:
Now multiply: 4\frac{15}{19} \times \frac{76}{13}
Convert 4\frac{15}{19} into improper fraction: = \frac{(4\times19)+15}{19} = \frac{91}{19}
Step 4:
Thus, \frac{91}{19} \times \frac{76}{13} = \frac{91\times76}{19\times13} = \frac{6916}{247}
Step 5:
Convert to mixed fraction: 6916 \div 247 = 28 \text{ remainder } 0
Thus, = 28
Answer: 28


Q10: 7\frac{1}{4} \times 2\frac{3}{16} \times 2\frac{2}{7}

Step 1:
Convert mixed fractions to improper fractions: 7\frac{1}{4} = \frac{29}{4}, \quad 2\frac{3}{16} = \frac{35}{16}, \quad 2\frac{2}{7} = \frac{16}{7}

Step 2:
Multiply all three fractions: \frac{29}{4} \times \frac{35}{16} \times \frac{16}{7}
Step 3:
Simplify before multiplying:
16 cancels with 16: = \frac{29}{4} \times \frac{35}{7}
Now, 35\div7 = 5: = \frac{29}{4} \times 5 = \frac{145}{4}
Step 4:
Convert into mixed fraction: = 36\frac{1}{4}
Answer: 36\frac{1}{4}


Q11: Find the value of:

(i) \frac{3}{4} of \frac{8}{9} = \frac{3}{4} \times \frac{8}{9} = \frac{24}{36} = \frac{2}{3}

Answer = \frac{2}{3}

(ii) \frac{1}{2} of 2\frac{2}{3}
Convert 2\frac{2}{3} = \frac{8}{3} = \frac{1}{2} \times \frac{8}{3} = \frac{8}{6} = \frac{4}{3} = 1\frac{1}{3}
Answer = 1\frac{1}{3}

(iii) \frac{4}{5} of 1 hour
= \frac{4}{5} \times 60\ \text{minutes} = 48\ \text{minutes}
Answer = 48 minutes

(iv) \frac{3}{5} of ₹1
= \frac{3}{5} \times 1 = ₹0.60
Answer = ₹0.60

(v) \frac{8}{15} of 1\frac{1}{2} metres
Convert 1\frac{1}{2} = \frac{3}{2} = \frac{8}{15} \times \frac{3}{2} = \frac{24}{30} = \frac{4}{5}
Answer = \frac{4}{5} metres = 80 cm

(vi) \frac{5}{7} of 2\frac{1}{3} kg
Convert 2\frac{1}{3} = \frac{7}{3} = \frac{5}{7} \times \frac{7}{3} = \frac{5}{3} = 1\frac{2}{3}
Answer = 1\frac{2}{3} kg


Q12: A car can travel 12\frac{1}{2} km in 1 litre of petrol. How much distance can it travel in 42\frac{3}{5} litres of petrol?

Step 1:
Convert mixed numbers into improper fractions: 12\frac{1}{2} = \frac{25}{2}, \quad 42\frac{3}{5} = \frac{213}{5}

Step 2:
Multiply distance per litre by the number of litres: \text{Distance} = \frac{25}{2} \times \frac{213}{5}
Step 3:
Multiply numerators and denominators: = \frac{25\times213}{2\times5} = \frac{5325}{10}
Step 4:
Simplify: = 532.5\ \text{km}
Answer: 532.5 km


Q13: A graphic designer charges ₹27\frac{3}{5} for each diagram. Pind the amount he will charge if he designs 186 diagrams for a book.

Step 1:
Convert mixed fraction to improper fraction: 27\frac{3}{5} = \frac{138}{5}

Step 2:
Multiply charge per diagram with number of diagrams: \text{Total Amount} = \frac{138}{5} \times 186
Step 3:
Multiply: = \frac{138\times186}{5} = \frac{25668}{5}
Step 4:
Divide: = 5133.6 = 5133\frac{3}{5}
Answer: ₹5133.60 or ₹5133\frac{3}{5}


Q14: If a cloth costs ₹715\frac{1}{4} per metre, find the cost of 3\frac{2}{5} metres of this cloth.

Step 1:
Convert mixed numbers into improper fractions: 715\frac{1}{4} = \frac{2861}{4}, \quad 3\frac{2}{5} = \frac{17}{5}

Step 2:
Multiply cost per metre by number of metres: \text{Total Cost} = \frac{2861}{4} \times \frac{17}{5}
Step 3:
Multiply numerators and denominators: = \frac{2861\times17}{4\times5} = \frac{48637}{20}
Step 4:
Simplify: = 2431\frac{17}{20} = 2431.85
Answer:2431\frac{17}{20} or ₹2431.85


Q15: Advertising in a magazine costs ₹1472\frac{2}{5} per square inch. Find the cost of an advertisement of 17\frac{6}{7} square inch.

Step 1:
Convert mixed numbers into improper fractions: 1472\frac{2}{5} = \frac{7362}{5}, \quad 17\frac{6}{7} = \frac{125}{7}

Step 2:
Multiply cost per square inch with area in square inches: \text{Total Cost} = \frac{7362}{5} \times \frac{125}{7}
Step 3:
Multiply numerators and denominators: = \frac{7362\times125}{5\times7} = \frac{920250}{35}
Step 4:
Simplify: = 26292\frac{6}{7} = 26292.8571
Answer:26292\frac{6}{7} or ₹26292.86


Q16: A car from city A to city B with a uniform speed of 52\frac{2}{7} km per hour. Find the distance between the two cities, if it took 4\frac{3}{8} hours for the car to reach city B from city A.

Step 1:
Convert mixed numbers into improper fractions: 52\frac{2}{7} = \frac{366}{7}, \quad 4\frac{3}{8} = \frac{35}{8}

Step 2:
Multiply speed and time: \text{Distance} = \frac{366}{7} \times \frac{35}{8}
Step 3:
Simplify before multiplying: \frac{35}{7} = 5,\quad \text{thus}
\text{Distance} = \frac{366\times5}{8} = \frac{1830}{8}
Step 4:
Simplify: = 228\frac{3}{4} = 228.75\ \text{km}
Answer: 228\frac{3}{4} km or 228.75 km


Q17: The length of a rectangular plot of land is 29\frac{3}{7} m. If its breadth is 12\frac{8}{11} m, find its area.

Step 1:
Convert mixed numbers into improper fractions: 29\frac{3}{7} = \frac{206}{7}, \quad 12\frac{8}{11} = \frac{140}{11}

Step 2:
Area of rectangle = Length × Breadth: \text{Area} = \frac{206}{7} \times \frac{140}{11}
Step 3:
Multiply numerators and denominators: = \frac{206\times140}{7\times11} = \frac{28840}{77}
Step 4:
Simplify: = 374\frac{6}{11} = 374.4156\ \text{m}^2
Answer: = 374\frac{6}{11}\ m^2 or 374.42\ m^2


previous
next
Share the Post:

Related Posts

Leave a Comment

Your email address will not be published. Required fields are marked *

Join Our Newsletter