Exponents

exponents class 8 selina

Step by Step solutions of Concise Mathematics ICSE Class-8 Maths chapter 2- Exponents by Selina is provided.

Table of Contents

Exercise: 2-B

Q1: Multiple Choice Type:

i. If \(x=3^m\) and \(y=3^{m+2}, \frac{x}{y}\), is:
⇒ \(\frac{x}{y} = \frac{3^m}{3^{m+2}} = 3^{m – (m+2)} = 3^{-2} = \frac{1}{9}\)
Answer: b. \(\frac{1}{9}\)

ii. \(\left(\frac{x^{-2}}{3y^{-1}}\right)^{-1}\) is equal to:
⇒ First simplify the inner expression: \(\frac{x^{-2}}{3y^{-1}} = \frac{x^{-2}}{3} \cdot y^1 = \frac{y}{3x^2}\)
Now take reciprocal (since power is -1): \(\left(\frac{y}{3x^2}\right)^{-1} = \frac{3x^2}{y}\)
Answer: a. \(\frac{3x^2}{y}\)

iii. If, \(\left(\frac{4}{5}\right)^{-3}\times\left(\frac{4}{5}\right)^{-5}=\left(\frac{4}{5}\right)^{3x-2}\) the value of x is:
⇒ Use exponent rule: \(\left(\frac{4}{5}\right)^{-3 -5} = \left(\frac{4}{5}\right)^{-8}\)
So, \(\left(\frac{4}{5}\right)^{3x – 2} = \left(\frac{4}{5}\right)^{-8}\)
Now compare powers: \(3x – 2 = -8 \Rightarrow 3x = -6 \Rightarrow x = -2\)
Answer: c. -2

iv. If \(\left(\frac{m}{n}\right)^{x-1}=\left(\frac{n}{m}\right)^{x-5}\), the value of x is:
⇒ Rewrite RHS using reciprocal rule: \(\left(\frac{n}{m}\right)^{x – 5} = \left(\frac{m}{n}\right)^{-(x – 5)}\)
So, \(\left(\frac{m}{n}\right)^{x – 1} = \left(\frac{m}{n}\right)^{-(x – 5)}\)
Now compare powers: \(x – 1 = -(x – 5)\)
⇒ \(x – 1 = -x + 5\)
⇒ \(2x = 6 \Rightarrow x = 3\)
Answer: a. 3

v. \(\left(\frac{1}{7}\right)^{-3}\times7^{-1}\times\frac{1}{49}\) is equal to:
⇒ \(\left(\frac{1}{7}\right)^{-3} = 7^3 = 343\)
⇒ \(7^{-1} = \frac{1}{7}\), \(\frac{1}{49} = 7^{-2}\)
So, \(343 \times \frac{1}{7} \times \frac{1}{49} = 7^3 \times 7^{-1} \times 7^{-2}\)
⇒ \(7^{3 -1 -2} = 7^0 = 1\)
Answer: d. 1


Q2: Compute:

i. \(1^8 \times 3^0 \times 5^3 \times 2^2\)
⇒ \(1^8 = 1,\ 3^0 = 1,\ 5^3 = 125,\ 2^2 = 4\)
⇒ \(1 \times 1 \times 125 \times 4 = 500\)
Answer: 500

ii. \(\left(4^7\right)^2 \times \left(4^{-3}\right)^4\)
⇒ \(4^{7 \times 2} \times 4^{-3 \times 4} = 4^{14} \times 4^{-12} = 4^{2} = 16\)
Answer: 16

iii. \(\left(2^{-9} \div 2^{-11}\right)^3\)
⇒ \(2^{-9 – (-11)} = 2^2\)
⇒ \((2^2)^3 = 2^6 = 64\)
Answer: 64

iv. \(\left(\frac{2}{3}\right)^{-4} \times \left(\frac{27}{8}\right)^{-2}\)
⇒ \(\left(\frac{3}{2}\right)^4 \times \left(\frac{8}{27}\right)^2 = \frac{81}{16} \times \frac{64}{729} = \frac{5184}{11664} = \frac{4}{9}\)
Answer: \(\frac{4}{9}\)

v. \(\left(\frac{56}{28}\right)^0 \div \left(\frac{2}{5}\right)^3 \times \frac{16}{25}\)
⇒ Any number to power 0 is 1, so LHS = 1
⇒ \(\frac{1}{\left(\frac{2}{5}\right)^3} \times \frac{16}{25} = \left(\frac{5}{2}\right)^3 \times \frac{16}{25}\)
⇒ \(\frac{125}{8} \times \frac{16}{25} = \frac{2000}{200} = 10\)
Answer: 10

vi. \(\left(12\right)^{-2} \times 3^3\)
⇒ \(\left(12\right)^{-2} = \frac{1}{12^2} = \frac{1}{144}\), and \(3^3 = 27\)
⇒ \(\frac{1}{144} \times 27 = \frac{27}{144} = \frac{3}{16}\)
Answer: \(\frac{3}{16}\)

vii. \(\left(-5\right)^4 \times \left(-5\right)^6 \div \left(-5\right)^9\)
⇒ Use exponent rules: \(-5^{4+6-9} = -5^1 = -5\)
Answer: -5

viii. \(\left(-\frac{1}{3}\right)^4 \div \left(-\frac{1}{3}\right)^8 \times \left(-\frac{1}{3}\right)^5\)
⇒ Add/Subtract powers: ⇒ \(\left(-\frac{1}{3}\right)^{4 – 8 + 5} = \left(-\frac{1}{3}\right)^1 = -\frac{1}{3}\)
Answer: \(-\frac{1}{3}\)

ix. \(9^0 \times 4^{-1} \div 2^{-4}\)
⇒ \(1 \times \frac{1}{4} \div \frac{1}{16} = \frac{1}{4} \times 16 = 4\)
Answer: 4

x. \(\left(625\right)^{-\frac{3}{4}}\)
⇒ \(625 = 5^4 \Rightarrow \left(5^4\right)^{-3/4} = 5^{-3} = \frac{1}{125}\)
Answer: \(\frac{1}{125}\)

xi. \(\left(\frac{27}{64}\right)^{-\frac{2}{3}}\)
⇒ \(\left(\frac{3^3}{4^3}\right)^{-\frac{2}{3}} = \left(\frac{3}{4}\right)^{-2} = \left(\frac{4}{3}\right)^2 = \frac{16}{9}\)
Answer: \(\frac{16}{9}\)

xii. \(\left(\frac{1}{32}\right)^{-\frac{2}{5}}\)
⇒ \(32 = 2^5\), so \(\left(2^{-5}\right)^{-\frac{2}{5}} = 2^2 = 4\)
Answer: 4

xiii. \(\left(125\right)^{-\frac{2}{3}} \div \left(8\right)^{\frac{2}{3}}\)
⇒ \(125 = 5^3,\ 8 = 2^3\) ⇒ \((5^3)^{-2/3} \div (2^3)^{2/3} = 5^{-2} \div 2^2 = \frac{1}{25} \div 4 = \frac{1}{100}\)
Answer: \(\frac{1}{100}\)

xiv. \((243)^{\frac{2}{5}} \div (32)^{-\frac{2}{5}}\)
⇒ \(243 = 3^5,\ 32 = 2^5\)
⇒ \(3^2 \div 2^{-2} = 9 \times 4 = 36\)
Answer: 36

xv. \((-3)^4 – (\sqrt[4]{3})^0 \times (-2)^5 \div 64^{2/3}\)
⇒ \((-3)^4 = 81,\ (\sqrt[4]{3})^0 = 1,\ (-2)^5 = -32,\ 64^{2/3} = (4^3)^{2/3} = 4^2 = 16\)
⇒ Expression = \(81 – 1 \times (-32) \div 16 = 81 + 2 = 83\)
Answer: 83

xvi. \((27)^{2/3} \div \left(\frac{81}{16}\right)^{-1/4}\)
⇒ \(27 = 3^3 \Rightarrow 3^2 = 9,\ \left(\frac{81}{16}\right)^{-1/4} = \left(\frac{3^4}{2^4}\right)^{-1/4} = \left(\frac{3}{2}\right)^{-1} = \frac{2}{3}\)
⇒ \(9 \div \frac{2}{3} = 9 \times \frac{3}{2} = \frac{27}{2}\)
Answer: \(\frac{27}{2}\)


Q3: Simplify:

i. \(8^\frac{4}{3} + 25^\frac{3}{2} – \left(\frac{1}{27}\right)^{-\frac{2}{3}}\)
We will simplify each term one by one:
– \(8^\frac{4}{3} = \left(2^3\right)^\frac{4}{3} = 2^4 = 16\)
– \(25^\frac{3}{2} = \left(5^2\right)^\frac{3}{2} = 5^3 = 125\)
– \(\left(\frac{1}{27}\right)^{-\frac{2}{3}} = 27^\frac{2}{3} = 9\)
Now, combining them: \[ 16 + 125 – 9 = 132 \] Answer: 132

ii. \(\left[\left(64\right)^{-2}\right]^{-3} \div \left[\left\{\left(-8\right)^2\right\}^3\right]^2\)
We will simplify each term one by one:
Step 1. \(\left(64\right)^{-2}\):
Since \(64 = 4^3\), we can write it as: \[ \left(64\right)^{-2} = \left(4^3\right)^{-2} = 4^{-6} \] Now, \(\left[4^{-6}\right]^{-3} = 4^{18}\). Thus, we get: \[ \left[\left(64\right)^{-2}\right]^{-3} = 4^{18} \]Step 2. \(\left[\left\{\left(-8\right)^2\right\}^3\right]^2\):
First, \(\left(-8\right)^2 = 64\), so: \[ \left\{\left(-8\right)^2\right\}^3 = 64^3 = 262144 \] Then, \(\left(262144\right)^2 = 68719476736\).
Now, combining the two terms: \[ \frac{4^{18}}{68719476736} \]Since \(4^{18} = (2^2)^{18} = 2^{36}\), the final expression becomes: \[ \frac{2^{36}}{68719476736} \] This simplifies to: \[ \frac{2^{36}}{2^{36}} = 1 \]Answer: 1

iii. \((2^{-3} – 2^{-4})(2^{-3} + 2^{-4})\)
We will use the identity \((a-b)(a+b) = a^2 – b^2\). Here, \(a = 2^{-3}\) and \(b = 2^{-4}\).
– \((2^{-3})^2 = 2^{-6}\) and \((2^{-4})^2 = 2^{-8}\)
Now: \[ 2^{-6} – 2^{-8} = \frac{1}{64} – \frac{1}{256} = \frac{4}{256} – \frac{1}{256} = \frac{3}{256} \] Answer: \(\frac{3}{256}\)


Q4: Evaluate:

i. \(\left(-5\right)^0\)
Any non-zero number raised to the power of 0 is equal to 1: \[ \left(-5\right)^0 = 1 \] Answer: 1

ii. \(8^0 + 4^0 + 2^0\)
Each term involves raising a non-zero number to the power of 0, so each term equals 1: \[ 8^0 + 4^0 + 2^0 = 1 + 1 + 1 = 3 \] Answer: 3

iii. \(\left(8 + 4 + 2\right)^0\)
First, we sum the numbers inside the parentheses: \[ 8 + 4 + 2 = 14 \] Now, raise 14 to the power of 0: \[ 14^0 = 1 \] Answer: 1

iv. \({4x}^0\)
Any expression of the form \(a^0\) where \(a \neq 0\) will equal 1, so: \[ {4x}^0 = 1 \] Answer: 1

v. \(\left(4x\right)^0\)
Similar to the previous case, \( (4x)^0 = 1 \) for any non-zero value of \(x\): \[ (4x)^0 = 1 \] Answer: 1

vi. \(\left[\left({10}^3\right)^0\right]^5\)
First simplify the inner expression: \[ \left(10^3\right)^0 = 1 \] Now raise 1 to the power of 5: \[ 1^5 = 1 \] Answer: 1

vii. \(\left(7x^0\right)^2\)
Since \(x^0 = 1\), this simplifies to: \[ \left(7 \times 1\right)^2 = 7^2 = 49 \] Answer: 49

viii. \(9^0 + 9^{-1} – 9^{-2} + 9^\frac{1}{2} – 9^{-\frac{1}{2}}\)
Simplify each term: – \(9^0 = 1\)
– \(9^{-1} = \frac{1}{9}\)
– \(9^{-2} = \frac{1}{81}\)
– \(9^{\frac{1}{2}} = 3\) (since \(\sqrt{9} = 3\))
– \(9^{-\frac{1}{2}} = \frac{1}{3}\)
Now, combine them: \[ 1 + \frac{1}{9} – \frac{1}{81} + 3 – \frac{1}{3} \]First, simplify \(1 + 3 = 4\). Now combine the fractions: \[ \frac{1}{9} – \frac{1}{81} = \frac{9}{81} – \frac{1}{81} = \frac{8}{81} \] Now subtract \(\frac{1}{3} = \frac{27}{81}\): \[ 4 + \frac{8}{81} – \frac{27}{81} = 4 – \frac{19}{81} = \frac{324}{81} – \frac{19}{81} = \frac{305}{81} \] So, the final answer is: \[ \frac{305}{81} \] Answer: \(\frac{305}{81}\)


Q5: Simplify:

i. \(\frac{a^5b^2}{a^2b^{-3}}\)
We simplify the powers of \(a\) and \(b\) using the laws of exponents: \[ \frac{a^5}{a^2} \times \frac{b^2}{b^{-3}} = a^{5-2} \times b^{2 – (-3)} = a^3 \times b^{2+3} = a^3 \times b^5 \] Answer: \(a^3b^5\)

ii. \(15y^8 \div 3y^3\)
First, divide the constants and simplify the powers of \(y\): \[ \frac{15}{3} \times \frac{y^8}{y^3} = 5 \times y^{8-3} = 5y^5 \] Answer: \(5y^5\)

iii. \(x^{10}y^6 \div x^3y^{-2}\)
Simplify the powers of \(x\) and \(y\): \[ \frac{x^{10}}{x^3} \times \frac{y^6}{y^{-2}} = x^{10-3} \times y^{6 – (-2)} = x^7 \times y^{6+2} = x^7 \times y^8 \] Answer: \(x^7y^8\)

iv. \(5z^{16} \div 15z^{-11}\)
First, divide the constants and simplify the powers of \(z\): \[ \frac{5}{15} \times \frac{z^{16}}{z^{-11}} = \frac{1}{3} \times z^{16 – (-11)} = \frac{1}{3} \times z^{16+11} = \frac{1}{3} \times z^{27} \] Answer: \(\frac{z^{27}}{3}\)

v. \(\left(36x^2\right)^\frac{1}{2}\)
Apply the power of a power rule: \[ \left(36x^2\right)^\frac{1}{2} = 36^\frac{1}{2} \times \left(x^2\right)^\frac{1}{2} = 6 \times x = 6x \] Answer: \(6x\)

vi. \(\left(125x^{-3}\right)^\frac{1}{3}\)
Apply the power of a power rule: \[ \left(125x^{-3}\right)^\frac{1}{3} = 125^\frac{1}{3} \times \left(x^{-3}\right)^\frac{1}{3} = 5 \times x^{-1} = \frac{5}{x} \] Answer: \(\frac{5}{x}\)

vii. \(\left(2x^2y^{-3}\right)^{-2}\)
Apply the power of a power rule: \[ \left(2x^2y^{-3}\right)^{-2} = 2^{-2} \times \left(x^2\right)^{-2} \times \left(y^{-3}\right)^{-2} = \frac{1}{4} \times x^{-4} \times y^6 = \frac{x^{-4}y^6}{4} \] Answer: \(\frac{x^{-4}y^6}{4}\)

viii. \(\left(27x^{-3}y^6\right)^\frac{2}{3}\)
Apply the power of a power rule: \[ \left(27x^{-3}y^6\right)^\frac{2}{3} = 27^\frac{2}{3} \times \left(x^{-3}\right)^\frac{2}{3} \times \left(y^6\right)^\frac{2}{3} = 9 \times x^{-2} \times y^4 = 9x^{-2}y^4 \] Answer: \(9x^{-2}y^4\)

ix. \(\left(-2x^\frac{2}{3}y^{-\frac{3}{2}}\right)^6\)
Apply the power of a power rule: \[ \left(-2x^\frac{2}{3}y^{-\frac{3}{2}}\right)^6 = (-2)^6 \times \left(x^\frac{2}{3}\right)^6 \times \left(y^{-\frac{3}{2}}\right)^6 = 64 \times x^4 \times y^{-9} \] Answer: \(64x^4y^{-9}\)


Q6: Simplify: \(\left(x^{a+b}\right)^{a-b}.\left(x^{b+c}\right)^{b-c}.\left(x^{c-a}\right)^{c-a}\).

Step 1: Apply the power of a power rule:
The power of a power rule is: \((x^m)^n = x^{m \cdot n}\).
So, applying this rule to each term:
\(\left(x^{a+b}\right)^{a-b} = x^{(a+b)(a-b)}\)
\(\left(x^{b+c}\right)^{b-c} = x^{(b+c)(b-c)}\)
\(\left(x^{c+a}\right)^{c-a} = x^{(c+a)(c-a)}\)
Step 2: Expand the exponents:
\((a+b)(a-b) = a^2 – b^2\) (difference of squares)
\((b+c)(b-c) = b^2 – c^2\) (difference of squares)
\((c+a)(c-a) = c^2 – a^2\) (difference of squares)
Step 3: Substitute the expanded exponents:
\(x^{a^2 – b^2} \cdot x^{b^2 – c^2} \cdot x^{c^2 – a^2}\)
Step 4: Combine the terms using the product rule for exponents:
\(x^{(a^2 – b^2) + (b^2 – c^2) + (c^2 – a^2)}\)
Step 5: Simplify the expression:
\(a^2 – b^2 + b^2 – c^2 + c^2 – a^2\)
The terms \(b^2\) and \(-b^2\), \(c^2\) and \(-c^2\), \(a^2\) and \(-a^2\) cancel out:
\(x^0\)
Answer: \(x^0 = 1\)


Q7: Simplify:

i. \(\sqrt[5]{x^{20}y^{-10}z^5}\div\frac{x^3}{y^3}\)
Step 1: Simplify the fifth root:
\(\sqrt[5]{x^{20}y^{-10}z^5} = x^{\frac{20}{5}} y^{\frac{-10}{5}} z^{\frac{5}{5}} = x^4 y^{-2} z\)
Step 2: Simplify the division of the fractions:
\(\frac{x^4 y^{-2} z}{\frac{x^3}{y^3}} = x^4 y^{-2} z \times \frac{y^3}{x^3} = x^{4-3} y^{-2+3} z\)
Step 3: Simplify the exponents:
\(x^1 y^1 z = x y z\)
Answer: \(xyz\)

ii. \(\left(\frac{256a^{16}}{81b^4}\right)^{\frac{-3}{4}}\)
Step 1: Apply the power of a fraction rule:
\(\left(\frac{256a^{16}}{81b^4}\right)^{\frac{-3}{4}} = \frac{256^{\frac{-3}{4}} a^{16 \cdot \frac{-3}{4}}}{81^{\frac{-3}{4}} b^{4 \cdot \frac{-3}{4}}}\)
Step 2: Simplify each term:
\(256^{\frac{-3}{4}} = 2^{-6}\), because \(256 = 2^8\)
\(a^{16 \cdot \frac{-3}{4}} = a^{-12}\)
\(81^{\frac{-3}{4}} = 3^{-3}\), because \(81 = 3^4\)
\(b^{4 \cdot \frac{-3}{4}} = b^{-3}\)
Step 3: Put the simplified terms together:
\(\frac{2^{-6} a^{-12}}{3^{-3} b^{-3}}\)
Step 4: Simplify the negative exponents by moving terms to the denominator:
\(\frac{1}{2^6 a^{12}} \times \frac{3^3}{b^3}\)
Step 5: Final Simplified Expression:
\(\frac{3^3}{2^6 a^{12} b^3}\)
Answer: \(\frac{3^3}{2^6 a^{12} b^3} = \frac{27}{64 a^{12} b^3}\)


Q8: Simplify and express as positive indices:

i. \(\left(a^{-2}b\right)^{-2}.\left(ab\right)^{-3}\)
Step 1: Apply the power of a product rule:
\(\left(a^{-2}b\right)^{-2} = a^{4} b^{-2}\)
\(\left(ab\right)^{-3} = a^{-3} b^{-3}\)
Step 2: Combine the terms:
\(a^{4} b^{-2} \times a^{-3} b^{-3} = a^{4-3} b^{-2-3} = a^{1} b^{-5}\)
Step 3: Express with positive indices:
\(a b^{-5}\)
Answer: \(\frac{a}{b^{5}}\)

ii. \(\left(x^n y^{-m}\right)^4 \times \left(x^3 y^{-2}\right)^{-n}\)
Step 1: Apply the power of a product rule:
\(\left(x^n y^{-m}\right)^4 = x^{4n} y^{-4m}\)
\(\left(x^3 y^{-2}\right)^{-n} = x^{-3n} y^{2n}\)
Step 2: Combine the terms:
\(x^{4n} y^{-4m} \times x^{-3n} y^{2n} = x^{4n-3n} y^{-4m+2n} = x^{n} y^{2n-4m}\)
Answer: \(x^n y^{2n-4m}\)

iii. \(\left(\frac{125a^{-3}}{y^6}\right)^{\frac{-1}{3}}\)
Step 1: Apply the power of a quotient rule:
\(\left(\frac{125a^{-3}}{y^6}\right)^{\frac{-1}{3}} = \frac{125^{\frac{-1}{3}} a^{-3 \cdot \frac{-1}{3}}}{y^{6 \cdot \frac{-1}{3}}}\)
Step 2: Simplify each term:
\(125^{\frac{-1}{3}} = 5^{-1}\), because \(125 = 5^3\)
\(a^{-3 \cdot \frac{-1}{3}} = a^{1}\)
\(y^{6 \cdot \frac{-1}{3}} = y^{-2}\)
Step 3: Simplify the final expression:
\(\frac{a}{5 y^{-2}} = \frac{a y^{2}}{5}\)
Answer: \(\frac{a y^{2}}{5}\)

iv. \(\left(\frac{32x^{-5}}{243y^{-5}}\right)^{\frac{-1}{5}}\)
Step 1: Apply the power of a quotient rule:
\(\left(\frac{32x^{-5}}{243y^{-5}}\right)^{\frac{-1}{5}} = \frac{32^{\frac{-1}{5}} x^{-5 \cdot \frac{-1}{5}}}{243^{\frac{-1}{5}} y^{-5 \cdot \frac{-1}{5}}}\)
Step 2: Simplify each term:
\(32^{\frac{-1}{5}} = 2^{-1}\), because \(32 = 2^5\)
\(x^{-5 \cdot \frac{-1}{5}} = x^{1}\)
\(243^{\frac{-1}{5}} = 3^{-1}\), because \(243 = 3^5\)
\(y^{-5 \cdot \frac{-1}{5}} = y^{1}\)
Step 3: Simplify the final expression:
\(\frac{3 x}{2 y}\)
Answer: \(\frac{3x}{2y}\)

v. \(\left(a^{-2}b\right)^{\frac{1}{2}} \times \left(ab^{-3}\right)^{\frac{1}{3}}\)
Step 1: Apply the power of a product rule:
\(\left(a^{-2}b\right)^{\frac{1}{2}} = a^{-1} b^{\frac{1}{2}}\)
\(\left(ab^{-3}\right)^{\frac{1}{3}} = a^{\frac{1}{3}} b^{-1}\)
Step 2: Combine the terms:
\(a^{-1} b^{\frac{1}{2}} \times a^{\frac{1}{3}} b^{-1} = a^{-1+\frac{1}{3}} b^{\frac{1}{2}-1} = a^{-\frac{2}{3}} b^{-\frac{1}{2}}\)
Answer: \(\frac{1}{a^{\frac{2}{3}} b^{\frac{1}{2}}}\)

vi. \(\left(xy\right)^{m-n} \times \left(yz\right)^{n-l} \times \left(zx\right)^{l-m}\)
Step 1: Apply the power of a product rule:
\(\left(xy\right)^{m-n} = x^{m-n} y^{m-n}\)
\(\left(yz\right)^{n-l} = y^{n-l} z^{n-l}\)
\(\left(zx\right)^{l-m} = z^{l-m} x^{l-m}\)
Step 2: Combine the terms:
\(x^{m-n} y^{m-n} \times y^{n-l} z^{n-l} \times z^{l-m} x^{l-m} = x^{m-n+l-m} y^{m-n+n-l} z^{n-l+l-m}\)
\(= x^{l-n} y^{m-l} z^{n-m}\)
Answer: \(x^{l-n} y^{m-l} z^{n-m}\)


Q9: Shows that: \(\left(\frac{x^a}{x^{-b}}\right)^{a-b}.\left(\frac{x^b}{x^{-c}}\right)^{b-c}.\left(\frac{x^c}{x^{-a}}\right)^{c-a}=1\)

Step 1: Simplify each term separately
\(\left(\frac{x^a}{x^{-b}}\right)^{a-b}\) becomes:
\(\frac{x^a}{x^{-b}} = x^{a – (-b)} = x^{a + b}\), so: \[ \left(x^{a + b}\right)^{a – b} = x^{(a + b)(a – b)} = x^{a^2 – b^2} \]Similarly, \(\left(\frac{x^b}{x^{-c}}\right)^{b-c}\) becomes:
\(\frac{x^b}{x^{-c}} = x^{b – (-c)} = x^{b + c}\), so: \[ \left(x^{b + c}\right)^{b – c} = x^{(b + c)(b – c)} = x^{b^2 – c^2} \]Finally, \(\left(\frac{x^c}{x^{-a}}\right)^{c-a}\) becomes:
\(\frac{x^c}{x^{-a}} = x^{c – (-a)} = x^{c + a}\), so: \[ \left(x^{c + a}\right)^{c – a} = x^{(c + a)(c – a)} = x^{c^2 – a^2} \] Step 2: Multiply the three terms together
Now, multiplying the simplified expressions: \[ x^{a^2 – b^2} \times x^{b^2 – c^2} \times x^{c^2 – a^2} \]Using the product rule of exponents (\(x^m \times x^n = x^{m+n}\)): \[ x^{(a^2 – b^2) + (b^2 – c^2) + (c^2 – a^2)} \] Step 3: Simplify the exponent
Simplifying the expression inside the exponent: \[ (a^2 – b^2) + (b^2 – c^2) + (c^2 – a^2) = a^2 – b^2 + b^2 – c^2 + c^2 – a^2 \] The terms \(a^2\) and \(-a^2\) cancel out, \(b^2\) and \(-b^2\) cancel out, and \(c^2\) and \(-c^2\) cancel out, leaving: \[ 0 \]Step 4: Final Answer
Therefore, we have: \[ x^0 = 1 \]Answer: 1


Q10: Evaluate: \(\frac{x^{5+n}\times\left(x^2\right)^{3n+1}}{x^{7n-2}}\)

Step 1: Apply the exponent rule on \(\left(x^2\right)^{3n+1}\)
We know that \(\left(x^m\right)^n = x^{m \times n}\). Therefore, applying this rule: \[ \left(x^2\right)^{3n+1} = x^{2 \times (3n+1)} = x^{6n+2} \]Step 2: Substitute the simplified term into the expression
The expression becomes: \[ \frac{x^{5+n} \times x^{6n+2}}{x^{7n-2}} \]Step 3: Use the product rule of exponents for the numerator
The product rule states that \(x^m \times x^n = x^{m+n}\). Therefore, applying this rule to the numerator: \[ x^{5+n} \times x^{6n+2} = x^{(5+n) + (6n+2)} = x^{5 + n + 6n + 2} = x^{7n + 7} \]Step 4: Apply the quotient rule of exponents
The quotient rule of exponents states that \(\frac{x^m}{x^n} = x^{m-n}\). Using this rule: \[ \frac{x^{7n+7}}{x^{7n-2}} = x^{(7n + 7) – (7n – 2)} = x^{7n + 7 – 7n + 2} = x^{9} \]Answer: \(x^9\)


Q11: Evaluate: \(\frac{a^{2n+1}\times a^{(2n+1)(2n-1)}}{a^{n(4n-1)}\times\left(a^2\right)^{2n+3}}\)

Step 1: Simplify the exponent of \(a^{(2n+1)(2n-1)}\)
Expand the exponent: \[ (2n+1)(2n-1) = 4n^2 – 1 \] So the expression becomes: \[ \frac{a^{2n+1} \times a^{4n^2 – 1}}{a^{n(4n – 1)} \times \left(a^2\right)^{2n+3}} \]Step 2: Apply the exponent rule for the denominator term \(\left(a^2\right)^{2n+3}\)
Using the exponent rule \(\left(a^m\right)^n = a^{m \times n}\), we get: \[ \left(a^2\right)^{2n+3} = a^{2 \times (2n+3)} = a^{4n+6} \] So the expression becomes: \[ \frac{a^{2n+1} \times a^{4n^2 – 1}}{a^{n(4n – 1)} \times a^{4n + 6}} \]Step 3: Combine the powers of \(a\) in the numerator
Using the product rule \(a^m \times a^n = a^{m + n}\), we combine the terms in the numerator: \[ a^{2n+1} \times a^{4n^2 – 1} = a^{(2n + 1) + (4n^2 – 1)} = a^{4n^2 + 2n} \]Step 4: Apply the exponent rule to the denominator term \(a^{n(4n – 1)}\)
Expand \(n(4n – 1)\): \[ n(4n – 1) = 4n^2 – n \] So the expression becomes: \[ \frac{a^{4n^2 + 2n}}{a^{4n^2 – n} \times a^{4n + 6}} \]Step 5: Combine the powers of \(a\) in the denominator
Use the product rule for exponents: \[ a^{4n^2 – n} \times a^{4n + 6} = a^{(4n^2 – n) + (4n + 6)} = a^{4n^2 + 3n + 6} \]Step 6: Apply the quotient rule of exponents
Use the quotient rule \(a^m / a^n = a^{m – n}\) to simplify the expression: \[ \frac{a^{4n^2 + 2n}}{a^{4n^2 + 3n + 6}} = a^{(4n^2 + 2n) – (4n^2 + 3n + 6)} = a^{4n^2 + 2n – 4n^2 – 3n – 6} \] Simplifying further: \[ = a^{-n – 6} = \frac{1}{a^{n+6}} \]Answer: \(a^{-n-6} = \frac{1}{a^{n+6}}\)


Q12: Prove that: \(\left(m+n\right)^{-1}\left(m^{-1}+n^{-1}\right)=\left(mn\right)^{-1}\)

Step 1: Start with the LHS
\[ \text{LHS} = \left(m+n\right)^{-1} \cdot \left(m^{-1} + n^{-1}\right) \]Step 2: Take LCM in the second bracket
\[ m^{-1} + n^{-1} = \frac{1}{m} + \frac{1}{n} = \frac{n + m}{mn} \]So now: \[ \text{LHS} = \left(m+n\right)^{-1} \cdot \frac{m + n}{mn} \]Step 3: Use the identity \(a^{-1} = \frac{1}{a}\)
\[ \text{LHS} = \frac{1}{m + n} \cdot \frac{m + n}{mn} \]Step 4: Cancel \((m + n)\) from numerator and denominator
\[ \text{LHS} = \frac{1}{mn} \]Step 5: Write RHS
\[ \text{RHS} = (mn)^{-1} = \frac{1}{mn} \]Conclusion:
\[ \text{LHS} = \text{RHS} \] Hence Proved.


Q13: Prove that:

i. \(\left(\frac{x^a}{x^b}\right)^\frac{1}{ab} \cdot \left(\frac{x^b}{x^c}\right)^\frac{1}{bc} \cdot \left(\frac{x^c}{x^a}\right)^\frac{1}{ca} = 1\)
Step 1: Apply exponent law \(\frac{x^m}{x^n} = x^{m – n}\)
\[ = \left(x^{a – b}\right)^\frac{1}{ab} \cdot \left(x^{b – c}\right)^\frac{1}{bc} \cdot \left(x^{c – a}\right)^\frac{1}{ca} \]Step 2: Apply power law \((x^m)^n = x^{mn}\)
\[ = x^{\frac{a – b}{ab}} \cdot x^{\frac{b – c}{bc}} \cdot x^{\frac{c – a}{ca}} \]Step 3: Use product law \(x^m \cdot x^n \cdot x^p = x^{m+n+p}\)
\[ = x^{\frac{a – b}{ab} + \frac{b – c}{bc} + \frac{c – a}{ca}} \]Step 4: Simplify the exponent
Let’s find the sum of the exponents: \[ \frac{a – b}{ab} + \frac{b – c}{bc} + \frac{c – a}{ca} \]Take LCM of denominators = \(abc\) \[ = \frac{(a – b)c + (b – c)a + (c – a)b}{abc} \]Expand numerator: \[ = (ac – bc) + (ab – ac) + (bc – ab) = 0 \]So: \[ = x^0 = 1 \]Hence Proved.

ii. \(\frac{1}{1 + x^{a – b}} + \frac{1}{1 + x^{b – a}} = 1\)
Step 1: Use identity: \(x^{b – a} = \frac{1}{x^{a – b}}\)
So the second term becomes: \[ \frac{1}{1 + \frac{1}{x^{a – b}}} \]Step 2: Simplify both terms
\[ \frac{1}{1 + x^{a – b}} + \frac{1}{1 + \frac{1}{x^{a – b}}} \]Now simplify the second term: \[ \frac{1}{1 + \frac{1}{x^{a – b}}} = \frac{1}{\frac{x^{a – b} + 1}{x^{a – b}}} = \frac{x^{a – b}}{x^{a – b} + 1} \]So full expression: \[ \frac{1}{1 + x^{a – b}} + \frac{x^{a – b}}{x^{a – b} + 1} \]Now take LCM: \[ = \frac{1 + x^{a – b}}{1 + x^{a – b}} = 1 \]Hence Proved.


Q14: Find the value of n, when:

i. \({12}^{-5}\times{12}^{2n+1}={12}^{13}\div{12}^7\)
Step 1: Use laws of exponents
LHS: \({12}^{-5} \times {12}^{2n+1} = {12}^{(2n+1 – 5)} = {12}^{2n – 4}\)
RHS: \({12}^{13} \div {12}^7 = {12}^{13 – 7} = {12}^6\)
Step 2: Equating exponents
\[ 2n – 4 = 6 \Rightarrow 2n = 10 \Rightarrow n = 5 \]Answer: n = 5

ii. \(\frac{a^{2n-3} \times \left(a^2\right)^{n+1}}{\left(a^4\right)^{-3}} = \left(a^3\right)^3 \div \left(a^6\right)^{-3}\)
Step 1: Simplify LHS
\[ \frac{a^{2n-3} \cdot a^{2(n+1)}}{a^{-12}} = \frac{a^{2n-3} \cdot a^{2n+2}}{a^{-12}} = \frac{a^{(4n -1)}}{a^{-12}} = a^{4n -1 +12} = a^{4n + 11} \]Step 2: Simplify RHS
\[ \left(a^3\right)^3 \div \left(a^6\right)^{-3} = a^9 \div a^{-18} = a^{9 + 18} = a^{27} \]Step 3: Equate exponents
\[ 4n + 11 = 27 \Rightarrow 4n = 16 \Rightarrow n = 4 \]Answer: n = 4


Q15: Simplify:

i. \(\frac{a^{2n+3}\cdot a^{(2n+1)(n+2)}}{(a^3)^{2n+1} \cdot a^{n(2n+1)}}\)
Step 1: Expand exponents
Numerator: \[ a^{2n+3} \cdot a^{(2n+1)(n+2)} = a^{2n+3 + (2n+1)(n+2)} \]Denominator: \[ (a^3)^{2n+1} \cdot a^{n(2n+1)} = a^{3(2n+1)} \cdot a^{n(2n+1)} = a^{3(2n+1) + n(2n+1)} \]Step 2: Apply laws of exponents
\[ \frac{a^{2n+3 + (2n+1)(n+2)}}{a^{3(2n+1) + n(2n+1)}} = a^{[2n+3 + (2n+1)(n+2) – (3(2n+1) + n(2n+1))]} \]Step 3: Expand terms
Expand numerator: \[ (2n+1)(n+2) = 2n(n+2) + 1(n+2) = 2n^2 + 4n + n + 2 = 2n^2 + 5n + 2 \] Numerator exponent becomes: \(2n + 3 + 2n^2 + 5n + 2 = 2n^2 + 7n + 5\)Expand denominator: \[ 3(2n+1) = 6n + 3,\quad n(2n+1) = 2n^2 + n \] Total denominator exponent = \(6n + 3 + 2n^2 + n = 2n^2 + 7n + 3\)Step 4: Final exponent
\[ a^{2n^2 + 7n + 5 – (2n^2 + 7n + 3)} = a^2 \]Answer: a²

ii. \(\frac{x^{2n+7}\cdot(x^2)^{3n+2}}{x^{4(2n+3)}}\)
Step 1: Simplify numerator
\[ x^{2n+7} \cdot x^{2(3n+2)} = x^{2n+7 + 6n + 4} = x^{8n + 11} \]Step 2: Simplify denominator
\[ x^{4(2n+3)} = x^{8n + 12} \]Step 3: Apply exponent rule
\[ x^{8n + 11 – (8n + 12)} = x^{-1} \]Answer: x⁻¹


Q16: Evaluate:

i. \(\left(2^{-3}+3^{-2}\right)\times7^0\)
\[ 2^{-3} = \frac{1}{8},\quad 3^{-2} = \frac{1}{9},\quad 7^0 = 1 \] \[ \left(\frac{1}{8} + \frac{1}{9}\right) \times 1 = \frac{17}{72} \]Answer: \(\frac{17}{72}\)

ii. \(\left(8^0+2^{-1}\right)\times3^2\)
\[ 8^0 = 1,\quad 2^{-1} = \frac{1}{2},\quad 3^2 = 9 \] \[ \left(1 + \frac{1}{2}\right) \times 9 = \frac{3}{2} \times 9 = \frac{27}{2} \]Answer: \(\frac{27}{2}\)

iii. \(\left\{\left(\frac{1}{6}\right)^{-1}-\left(\frac{1}{5}\right)^{-1}\right\}^{-2}\)
\[ \left(\frac{1}{6}\right)^{-1} = 6,\quad \left(\frac{1}{5}\right)^{-1} = 5 \] \[ (6 – 5)^{-2} = 1^{-2} = 1 \]Answer: 1

iv. \(\left[\left\{\left(-\frac{1}{3}\right)^{-2}\right\}^2\right]^{-1}\)
\[ \left(-\frac{1}{3}\right)^{-2} = \left(\frac{1}{(-1/3)^2}\right) = 9 \] \[ \left(9\right)^2 = 81,\quad \left(81\right)^{-1} = \frac{1}{81} \]Answer: \(\frac{1}{81}\)

v. \(\frac{5^{n+2}-5^{n+1}}{5^{n+1}}\)
Factor numerator: \[ = \frac{5^{n+1}(5 – 1)}{5^{n+1}} = \frac{5^{n+1} \cdot 4}{5^{n+1}} = 4 \]Answer: 4


Q17: Find the value of x, if:

i. \(\frac{1}{(125)^{x-7}} = 5^{2x-1}\)
We know: \[ 125 = 5^3 \Rightarrow \frac{1}{125^{x-7}} = 125^{-(x-7)} = (5^3)^{-(x-7)} = 5^{-3(x – 7)} \] Now equating: \[ 5^{-3(x – 7)} = 5^{2x – 1} \] Since bases are same, equate powers: \[ -3(x – 7) = 2x – 1 \Rightarrow -3x + 21 = 2x – 1 \Rightarrow 21 + 1 = 5x \Rightarrow x = \frac{22}{5} \]Answer: \(\frac{22}{5}\)

ii. \(\left(\frac{2}{3}\right)^3 \times \left(\frac{2}{3}\right)^{-4} = \left(\frac{2}{3}\right)^{2x+1}\)
Using exponent addition rule: \[ \left(\frac{2}{3}\right)^{3 – 4} = \left(\frac{2}{3}\right)^{-1} \Rightarrow \left(\frac{2}{3}\right)^{-1} = \left(\frac{2}{3}\right)^{2x+1} \] Equating exponents: \[ -1 = 2x + 1 \Rightarrow 2x = -2 \Rightarrow x = -1 \]Answer: \(-1\)

iii. \(4^x \div 4^{-3} = 4^5\)
Use rule: \(a^m \div a^n = a^{m – n}\) \[ 4^x \div 4^{-3} = 4^{x + 3} \Rightarrow 4^{x + 3} = 4^5 \Rightarrow x + 3 = 5 \Rightarrow x = 2 \]Answer: 2


Q18: Simplify; \(\frac{81\times3^{n+1}-9\times3^n}{81\times3^{n+2}-9\times3^{n+1}}\)

Step 1: Factor powers of 3
Note that \(81 = 3^4\) and \(9 = 3^2\). So, \[ = \frac{3^4 \cdot 3^{n+1} – 3^2 \cdot 3^n}{3^4 \cdot 3^{n+2} – 3^2 \cdot 3^{n+1}} \]Step 2: Use exponent laws:
\[ 3^4 \cdot 3^{n+1} = 3^{4 + n + 1} = 3^{n+5} \] \[ 3^2 \cdot 3^n = 3^{n+2} \] \[ 3^4 \cdot 3^{n+2} = 3^{n+6} \] \[ 3^2 \cdot 3^{n+1} = 3^{n+3} \]Now substitute back: \[ = \frac{3^{n+5} – 3^{n+2}}{3^{n+6} – 3^{n+3}} \]Step 3: Factor common power
Numerator: \[ 3^{n+2}(3^3 – 1) = 3^{n+2}(27 – 1) = 3^{n+2} \cdot 26 \] Denominator: \[ 3^{n+3}(3^3 – 1) = 3^{n+3}(27 – 1) = 3^{n+3} \cdot 26 \]So: \[ = \frac{3^{n+2} \cdot 26}{3^{n+3} \cdot 26} \]Step 4: Cancel 26 and apply exponent rule: \[ = \frac{3^{n+2}}{3^{n+3}} = 3^{(n+2) – (n+3)} = 3^{-1} \]Answer: \(\frac{1}{3}\)


Q19: If \(2^{n-7}\times5^{n-4}=1250\); find n.

Step 1: Express 1250 in terms of primes
1250 = 125 × 10 = \(5^3 \times 2 \times 5 = 2^1 \times 5^4\)
So, \[ 2^{n-7} \cdot 5^{n-4} = 2^1 \cdot 5^4 \]Step 2: Compare the powers of 2 and 5
Matching bases:
– From \(2^{n-7} = 2^1\) ⇒ \(n – 7 = 1\) ⇒ n = 8
– Check if this value also works for 5: \[ 5^{n-4} = 5^{8-4} = 5^4 \]Answer: n = 8


previous
next

Share the Post:

Leave a Comment

Your email address will not be published. Required fields are marked *

Related Posts​

  • Identities
    Step by Step solutions of Test Yourself Concise Mathematics ICSE Class-8 Maths chapter 12- Identities by Selina is provided.
  • Identities
    Step by Step solutions of Exercise- 12B Concise Mathematics ICSE Class-8 Maths chapter 12- Identities by Selina is provided.

Join Our Newsletter

Name
Email
The form has been submitted successfully!
There has been some error while submitting the form. Please verify all form fields again.

Scroll to Top