Exponents

exponents class 8 selina

Step by Step solutions of Concise Mathematics ICSE Class-8 Maths chapter 2- Exponents by Selina is provided.

Table of Contents

Exercise: 2-A

Q1: Multiple Choice Type

i. \(\left(\frac{1}{3}\right)^{-3}-\left(\frac{1}{2}\right)^{-3}\) is equal to:
⇒ Using the rule: \( a^{-m} = \frac{1}{a^m} \), we rewrite:
⇒ \( \left(\frac{1}{3}\right)^{-3} = 3^3 = 27 \)
⇒ \( \left(\frac{1}{2}\right)^{-3} = 2^3 = 8 \)
⇒ \( 27 – 8 = 19 \)
Answer: c. 19

ii. \(\left(\frac{2}{3}\right)^3\times\left(\frac{3}{2}\right)^6\) is equal to:
⇒ First simplify each part:
⇒ \( \left(\frac{2}{3}\right)^3 = \frac{8}{27} \)
⇒ \( \left(\frac{3}{2}\right)^6 = \frac{729}{64} \)
Now multiply both:
⇒ \( \frac{8}{27} \times \frac{729}{64} = \frac{8 \times 729}{27 \times 64} \)
Cancel common factors:
⇒ \( \frac{8}{64} = \frac{1}{8}, \quad \frac{729}{27} = 27 \)
⇒ Final value: \( \frac{1}{8} \times 27 = \frac{27}{8} \)
Answer: b. \(\frac{27}{8}\)

iii. \(8^0+8^{-1}+4^{-1}\) is equal to:
⇒ \( 8^0 = 1 \)
⇒ \( 8^{-1} = \frac{1}{8} \)
⇒ \( 4^{-1} = \frac{1}{4} \)
Now add: \( 1 + \frac{1}{8} + \frac{1}{4} \)
LCM of 8 and 4 is 8:
⇒ \( = 1 + \frac{1}{8} + \frac{2}{8} = 1 + \frac{3}{8} = \frac{11}{8} = 1\frac{3}{8} \)
Answer: b. \(1\frac{3}{8}\)

iv. \({(-5)}^5\times{(-5)}^{-3}\) is equal to:
Use law: \( a^m \times a^n = a^{m+n} \)
⇒ \( (-5)^5 \times (-5)^{-3} = (-5)^{5 + (-3)} = (-5)^2 = 25 \)
Answer: d. 25


Q2: Evaluate:

i. \( \left(3^{-1} \times 9^{-1}\right) \div 3^{-2} \)
⇒ \( 9^{-1} = (3^2)^{-1} = 3^{-2} \)
⇒ So, \( 3^{-1} \times 3^{-2} = 3^{-3} \)
Now divide: ⇒ \( \frac{3^{-3}}{3^{-2}} = 3^{-3 – (-2)} = 3^{-1} \)
⇒ \( = \frac{1}{3} \)
Answer: \( \frac{1}{3} \)

ii. \( \left(3^{-1} \times 4^{-1}\right) \div 6^{-1} \)
⇒ \( = \frac{1}{3} \times \frac{1}{4} = \frac{1}{12} \)
Divide by \( 6^{-1} = \frac{1}{6} \): ⇒ \( \frac{1}{12} \div \frac{1}{6} = \frac{1}{12} \times 6 = \frac{6}{12} = \frac{1}{2} \)
Answer: \( \frac{1}{2} \)

iii. \( \left(2^{-1} + 3^{-1}\right)^3 \)
⇒ \( 2^{-1} = \frac{1}{2}, \quad 3^{-1} = \frac{1}{3} \)
⇒ \( \left(\frac{1}{2} + \frac{1}{3}\right)^3 = \left(\frac{3+2}{6}\right)^3 = \left(\frac{5}{6}\right)^3 \)
⇒ \( = \frac{125}{216} \)
Answer: \( \frac{125}{216} \)

iv. \( \left(3^{-1} \div 4^{-1}\right)^2 \)
⇒ \( = \left(\frac{1}{3} \div \frac{1}{4}\right)^2 = \left(\frac{1}{3} \times 4\right)^2 = \left(\frac{4}{3}\right)^2 = \frac{16}{9} \)
Answer: \( \frac{16}{9} \)

v. \( \left(2^2 + 3^2\right) \times \left(\frac{1}{2}\right)^2 \)
⇒ \( = (4 + 9) \times \frac{1}{4} = 13 \times \frac{1}{4} = \frac{13}{4} \)
Answer: \( \frac{13}{4} \)

vi. \( \left(5^2 – 3^2\right) \times \left(\frac{2}{3}\right)^{-3} \)
⇒ \( = (25 – 9) \times \left(\frac{3}{2}\right)^3 = 16 \times \frac{27}{8} = \frac{432}{8} = 54 \)
Answer: 54

vii. \( \left[\left(\frac{1}{4}\right)^{-3} – \left(\frac{1}{3}\right)^{-3}\right] \div \left(\frac{1}{6}\right)^{-3} \)
⇒ \( = [4^3 – 3^3] \div 6^3 = (64 – 27) \div 216 = \frac{37}{216} \)
Answer: \( \frac{37}{216} \)

viii. \( \left[\left(-\frac{3}{4}\right)^{-2}\right]^2 \)
⇒ \( = \left(\frac{16}{9}\right)^2 = \frac{256}{81} \)
Answer: \( \frac{256}{81} \)

ix. \( \left\{\left(\frac{3}{5}\right)^{-2}\right\}^{-2} \)
⇒ Inner: \( \left(\frac{3}{5}\right)^{-2} = \left(\frac{5}{3}\right)^2 = \frac{25}{9} \)
Now raise to power -2:
⇒ \( \left(\frac{25}{9}\right)^{-2} = \left(\frac{9}{25}\right)^2 = \frac{81}{625} \)
Answer: \( \frac{81}{625} \)

x. \( \left(5^{-1} \times 3^{-1}\right) \div 6^{-1} \)
⇒ \( = \left(\frac{1}{5} \times \frac{1}{3}\right) \div \frac{1}{6} = \frac{1}{15} \div \frac{1}{6} = \frac{1}{15} \times 6 = \frac{6}{15} = \frac{2}{5} \)
Answer: \( \frac{2}{5} \)


Q3: If \(1125=3^m\times5^n\), find m and n.

Step 1: Prime factorize 1125
⇒ Divide by 5: \(1125 \div 5 = 225\)
⇒ Divide by 5 again: \(225 \div 5 = 45\)
⇒ Again: \(45 \div 5 = 9\)
⇒ Now divide by 3: \(9 \div 3 = 3\)
⇒ Finally: \(3 \div 3 = 1\)
So, ⇒ \(1125 = 5 \times 5 \times 5 \times 3 \times 3\)
⇒ \(1125 = 5^3 \times 3^2\)
Step 2: Compare with \(3^m \times 5^n\)
⇒ Matching powers: \(m = 2,\quad n = 3\)
Answer: m = 2, n = 3


Q4: Find x, if \(9\times3^x=\ \left(27\right)^{2x-3}\).

Step 1: Express all numbers as powers of 3
⇒ \(9 = 3^2\), \(27 = 3^3\)
So the equation becomes:
⇒ \(3^2 \times 3^x = (3^3)^{2x – 3}\)
Step 2: Apply exponent rules
LHS: \(3^2 \times 3^x = 3^{2 + x}\)
RHS: \((3^3)^{2x – 3} = 3^{3(2x – 3)} = 3^{6x – 9}\)
Now equate the powers of 3:
⇒ \(3^{2 + x} = 3^{6x – 9}\)
So, ⇒ \(2 + x = 6x – 9\)
Step 3: Solve the equation
⇒ \(2 + x = 6x – 9\)
⇒ Bring all terms to one side:
⇒ \(2 + x – 6x + 9 = 0\)
⇒ \(-5x + 11 = 0\)
⇒ \(-5x = -11\)
⇒ \(x = \frac{11}{5}\)
Answer: \(x = \frac{11}{5}\)


previous
next

Share the Post:

Leave a Comment

Your email address will not be published. Required fields are marked *

Related Posts​

  • Type casting in Java
    The process of converting the value of one data type to another data type is known as typecasting.
  • Identities
    Step by Step solutions of Test Yourself Concise Mathematics ICSE Class-8 Maths chapter 12- Identities by Selina is provided.

Join Our Newsletter

Name
Email
The form has been submitted successfully!
There has been some error while submitting the form. Please verify all form fields again.

Scroll to Top