Exponents and Powers

exponents and power class 8 rs aggarwal

Step by Step solutions of RS Aggarwal ICSE Class-8 Maths chapter 2- Exponents and Powers by Goyal Brothers Prakashan is provided

Table of Contents

Exercise: 2-A

Q1: Simplify

i. \(a^6\times\ a^8\)

Step-by-step simplification using the law of exponents:
Law Used: \(a^m \times a^n = a^{m+n}\)
Now applying the rule: \[ a^6 \times a^8 = a^{6+8} = a^{14} \]Answer: \(a^{14}\)

ii. \(x^5\times\ x^{-3}\)

Law Used: \(x^m \times x^n = x^{m+n}\) \[ x^5 \times x^{-3} = x^{5 + (-3)} = x^2 \] Answer: \(x^2\)

iii. \(z^9\times\ z^3\times\ z^{-6}\)

Combine all powers of z: \[ z^9 \times z^3 \times z^{-6} = z^{9+3+(-6)} = z^6 \] Answer: \(z^6\)

iv. \(a^2b^3\times\ a^5b^2\)

Use exponent rule on each base separately: \[ a^2 \times a^5 = a^{2+5} = a^7,\quad b^3 \times b^2 = b^{3+2} = b^5 \\ \Rightarrow a^7b^5 \] Answer: \(a^7b^5\)

v. \(5x^7\times3x^4\)

Multiply coefficients and apply exponent rule: \[ 5 \times 3 = 15,\quad x^7 \times x^4 = x^{7+4} = x^{11} \\ \Rightarrow 15x^{11} \] Answer: \(15x^{11}\)

vi. \(p^3q^4\times\ p^5q^{-5}\)

Group same bases and simplify: \[ p^3 \times p^5 = p^8,\quad q^4 \times q^{-5} = q^{-1} \\ \Rightarrow p^8q^{-1} \] Answer: \(p^8q^{-1}\)

vii. \(x^7y^{-5}\times\ x^{-5}y^3\)

Combine like terms: \[ x^7 \times x^{-5} = x^{2},\quad y^{-5} \times y^3 = y^{-2} \\ \Rightarrow x^2y^{-2} \] Answer: \(x^2y^{-2}\)

viii. \(x^{-2}y^5 \times x^0y^{-7}\)

Use rules for each variable: \[ x^{-2} \times x^0 = x^{-2},\quad y^5 \times y^{-7} = y^{-2} \\ \Rightarrow x^{-2}y^{-2} \] Answer: \(x^{-2}y^{-2}\)

ix. \(x^6y^4z^{-2} \times x^{-3}y^{-5}z^{-1} \times x^2z^4\)

Group like bases and simplify step-by-step:\[ x^{6} \times x^{-3} \times x^2 = x^{6 – 3 + 2} = x^5 \\ y^4 \times y^{-5} = y^{-1} \\ z^{-2} \times z^{-1} \times z^4 = z^{-2 – 1 + 4} = z^1 \\ \Rightarrow x^5y^{-1}z \] Answer: \(x^5y^{-1}z\)


Q2: Simplify:

i. \(\frac{x^{12}}{x^7}\)

Using the law of exponents: \(\frac{a^m}{a^n} = a^{m-n}\) \[ \frac{x^{12}}{x^7} = x^{12 – 7} = x^5 \] Answer: \(x^5\)

ii. \(\frac{z^6}{z^{-3}}\)

\[ \frac{z^6}{z^{-3}} = z^{6 – (-3)} = z^{6 + 3} = z^9 \] Answer: \(z^9\)

iii. \(\frac{m^5n^3}{m^2n^{-4}}\)

\[ = m^{5 – 2} \times n^{3 – (-4)} = m^3 \times n^7 \] Answer: \(m^3n^7\)

iv. \(18x^9 \div 6x^7\)

\[ = \frac{18}{6} \times \frac{x^9}{x^7} = 3x^{9 – 7} = 3x^2 \] Answer: \(3x^2\)

v. \(7a^{12} \div 56a^{15}\)

\[ = \frac{7}{56} \times \frac{a^{12}}{a^{15}} = \frac{1}{8} \times a^{-3} = \frac{a^{-3}}{8} \] Answer: \(\frac{a^{-3}}{8}\)

vi. \(a^{13}b^7 \div a^5b^{-3}\)

\[ = a^{13 – 5} \times b^{7 – (-3)} = a^8 \times b^{10} \] Answer: \(a^8b^{10}\)

vii. \(7x^{14} \div 21x^{-10}\)

\[ = \frac{7}{21} \times x^{14 – (-10)} = \frac{1}{3} \times x^{24} = \frac{x^{24}}{3} \] Answer: \(\frac{x^{24}}{3}\)

viii. \(p^{11} \div p^{11}\)

\[ = p^{11 – 11} = p^0 = 1 \] Answer: \(1\)

ix. \(\frac{a^7b^5c^4}{a^{-2}b^3c^6}\)

\[ = a^{7 – (-2)} \times b^{5 – 3} \times c^{4 – 6} = a^9 \times b^2 \times c^{-2} \] Answer: \(a^9b^2c^{-2}\)


Q3: Simplify:

i. \(\left(a^3\right)^2\)

\[ (a^3)^2 = a^{3 \times 2} = a^6 \] Answer: \(a^6\)

ii. \(\left(2x^2y\right)^4\)

Apply power to each factor: \[ (2x^2y)^4 = 2^4 \times (x^2)^4 \times y^4 = 16x^8y^4 \] Answer: \(16x^8y^4\)

iii. \(\left(m^2n^{-3}\right)^4\)

Apply power to both terms: \[ (m^2n^{-3})^4 = (m^2)^4 \times (n^{-3})^4 = m^{8} \times n^{-12} \] Answer: \(m^8n^{-12}\)

iv. \(\left(x^2y^{-3}\right)^{-2}\)

\[ (x^2y^{-3})^{-2} = (x^2)^{-2} \times (y^{-3})^{-2} = x^{-4} \times y^6 \] Answer: \(x^{-4}y^6\)

v. \(\left(3x^3y^{-3}\right)^2\)

Apply exponent to each factor: \[ (3x^3y^{-3})^2 = 3^2 \times (x^3)^2 \times (y^{-3})^2 = 9x^6y^{-6} \] Answer: \(9x^6y^{-6}\)

vi. \(\left(5m^4n^{-3}\right)^3\)

Apply exponent to all terms: \[ (5m^4n^{-3})^3 = 5^3 \times (m^4)^3 \times (n^{-3})^3 = 125m^{12}n^{-9} \] Answer: \(125m^{12}n^{-9}\)


Q4: Evaluate:

i. \(\left(36\right)^{1/2}\)

\[ 36^{1/2} = \sqrt{36} = 6 \] Answer: \(6\)

ii. \(\left(27\right)^{2/3}\)

\[ 27^{2/3} = \left(27^{1/3}\right)^2 = \left(\sqrt[3]{27}\right)^2 = 3^2 = 9 \] Answer: \(9\)

iii. \(\left(16\right)^{-3/4}\)

\[ 16^{-3/4} = \frac{1}{16^{3/4}} = \frac{1}{\left(16^{1/4}\right)^3} = \frac{1}{\left(\sqrt[4]{16}\right)^3} = \frac{1}{2^3} = \frac{1}{8} \] Answer: \(\frac{1}{8}\)

iv. \(\left(64\right)^{-1/3}\)

\[ 64^{-1/3} = \frac{1}{64^{1/3}} = \frac{1}{\sqrt[3]{64}} = \frac{1}{4} \] Answer: \(\frac{1}{4}\)

v. \(\left(81\right)^{-1/4}\)

\[ 81^{-1/4} = \frac{1}{81^{1/4}} = \frac{1}{\sqrt[4]{81}} = \frac{1}{3} \] Answer: \(\frac{1}{3}\)

vi. \(\left(32\right)^{-4/5}\)

\[ 32^{-4/5} = \frac{1}{32^{4/5}} = \frac{1}{\left(32^{1/5}\right)^4} = \frac{1}{(2)^4} = \frac{1}{16} \] Answer: \(\frac{1}{16}\)


Q5: Simplify:

i. \(\left(25a^2\right)^{1/2}\)

\[ (25a^2)^{1/2} = 25^{1/2} \times (a^2)^{1/2} = \sqrt{25} \times a = 5a \] Answer: \(5a\)

ii. \(\left(27x^{-3}\right)^{1/3}\)

\[ (27x^{-3})^{1/3} = 27^{1/3} \times (x^{-3})^{1/3} = 3 \times x^{-1} = \frac{3}{x} \] Answer: \(\frac{3}{x}\)

iii. \(\left(64m^{-6}n^3\right)^{2/3}\)

\[ (64m^{-6}n^3)^{2/3} = 64^{2/3} \times (m^{-6})^{2/3} \times (n^3)^{2/3} \\ = (4^2) \times m^{-4} \times n^2 = 16n^2m^{-4} = \frac{16n^2}{m^4} \] Answer: \(\frac{16n^2}{m^4}\)

iv. \(\left(81a^4b^8c^{-4}\right)^{1/4}\)

\[ (81a^4b^8c^{-4})^{1/4} = 81^{1/4} \times a^{4/4} \times b^{8/4} \times c^{-4/4} \\ = 3 \times a \times b^2 \times c^{-1} = \frac{3ab^2}{c} \] Answer: \(\frac{3ab^2}{c}\)

v. \(\left(3x^{-3}y^3\right)^{-2}\)

\[ (3x^{-3}y^3)^{-2} = 3^{-2} \times x^{6} \times y^{-6} = \frac{x^6}{9y^6} \] Answer: \(\frac{x^6}{9y^6}\)

vi. \(\left(6ab^2c^{-3}\right)^{-1}\)

\[ (6ab^2c^{-3})^{-1} = \frac{1}{6ab^2c^{-3}} = \frac{c^3}{6ab^2} \] Answer: \(\frac{c^3}{6ab^2}\)

vii. \(\left(-3a^{3/4}b^{-1/4}\right)^4\)

\[ (-3)^4 \times (a^{3/4})^4 \times (b^{-1/4})^4 = 81a^3b^{-1} = \frac{81a^3}{b} \] Answer: \(\frac{81a^3}{b}\)

viii. \(\left(32a^{10}b^{-5}\right)^{1/5}\)

\[ 32^{1/5} \times (a^{10})^{1/5} \times (b^{-5})^{1/5} = 2 \times a^2 \times b^{-1} = \frac{2a^2}{b} \] Answer: \(\frac{2a^2}{b}\)

ix. \(\sqrt[3]{x^{18}y^{-12}z^3}\)

\[ (x^{18}y^{-12}z^3)^{1/3} = x^6y^{-4}z = \frac{x^6z}{y^4} \] Answer: \(\frac{x^6z}{y^4}\)


Q6: Show that

i. \(\frac{x^{m+n}\times x^{n+l}\times x^{l+m}}{{(x^m\times x^n\times x^l)}^2}=1\)

Step-by-step simplification:
Numerator: \[ x^{m+n} \times x^{n+l} \times x^{l+m} = x^{(m+n) + (n+l) + (l+m)} = x^{2(m+n+l)} \]Denominator: \[ (x^m \times x^n \times x^l)^2 = (x^{m+n+l})^2 = x^{2(m+n+l)} \]Now the full expression: \[ \frac{x^{2(m+n+l)}}{x^{2(m+n+l)}} = x^0 = 1 \]Hence proved: \(\frac{x^{m+n}\times x^{n+l}\times x^{l+m}}{{(x^m\times x^n\times x^l)}^2} = 1\)

ii. \(\sqrt{x^{p-q}}\times\sqrt{x^{q-r}}\times\sqrt{x^{r-p}}=1\)

Step-by-step simplification using square root as exponent \(1/2\): \[ \sqrt{x^{p-q}} \times \sqrt{x^{q-r}} \times \sqrt{x^{r-p}} = (x^{p-q})^{1/2} \times (x^{q-r})^{1/2} \times (x^{r-p})^{1/2} \]Apply product rule: \[ = x^{\frac{1}{2}[(p-q) + (q-r) + (r-p)]} \]Simplify the power: \[ (p-q)+(q-r)+(r-p) = 0 \Rightarrow x^{0} = 1 \]Hence proved: \(\sqrt{x^{p-q}}\times\sqrt{x^{q-r}}\times\sqrt{x^{r-p}}=1\)


Q7: Show that \(\left(\frac{x^p}{x^q}\right)^r\times\left(\frac{x^q}{x^r}\right)^p\times\left(\frac{x^r}{x^p}\right)^q=1\)

Step-by-step simplification:
First, let’s simplify each term separately:
Step 1: For the first term: \[ \left(\frac{x^p}{x^q}\right)^r = \left(x^{p-q}\right)^r = x^{r(p-q)} = x^{rp – rq} \] Step 2: For the second term: \[ \left(\frac{x^q}{x^r}\right)^p = \left(x^{q-r}\right)^p = x^{p(q-r)} = x^{pq – pr} \] Step 3: For the third term: \[ \left(\frac{x^r}{x^p}\right)^q = \left(x^{r-p}\right)^q = x^{q(r-p)} = x^{qr – qp} \]Now, let’s multiply all three terms together: \[ x^{rp – rq} \times x^{pq – pr} \times x^{qr – qp} \]Apply the product rule for exponents: \[ x^{(rp – rq) + (pq – pr) + (qr – qp)} \]Simplifying the exponent: \[ = x^{rp – rq + pq – pr + qr – qp} \]Now, observe that terms cancel out: \[ rp – rq + pq – pr + qr – qp = 0 \]Therefore, we have: \[ x^0 = 1 \]Hence proved: \(\left(\frac{x^p}{x^q}\right)^r \times \left(\frac{x^q}{x^r}\right)^p \times \left(\frac{x^r}{x^p}\right)^q = 1\)


Q8: Show that

i. \({(x^{a+b})}^{a-b}\times{(x^{b+c})}^{b-c}\times{(x^{c+a})}^{c-a}=1\)

Step-by-step simplification:
Step 1: Start by simplifying each term separately using the power of a power rule \((x^m)^n = x^{m \times n}\):\[ (x^{a+b})^{a-b} = x^{(a+b)(a-b)} = x^{a^2 – b^2} \\ (x^{b+c})^{b-c} = x^{(b+c)(b-c)} = x^{b^2 – c^2} \\ (x^{c+a})^{c-a} = x^{(c+a)(c-a)} = x^{c^2 – a^2} \\ \]Now, multiply all the terms together: \[ x^{a^2 – b^2} \times x^{b^2 – c^2} \times x^{c^2 – a^2} \] Step 2. Apply the product rule for exponents \((x^m \times x^n = x^{m+n})\): \[ x^{(a^2 – b^2) + (b^2 – c^2) + (c^2 – a^2)} \] Step 3. Simplify the exponent: \[ a^2 – b^2 + b^2 – c^2 + c^2 – a^2 = 0 \]Thus, we have: \[ x^0 = 1 \]Hence proved: \({(x^{a+b})}^{a-b}\times{(x^{b+c})}^{b-c}\times{(x^{c+a})}^{c-a} = 1\)

ii. \(\left(\frac{x^a}{x^{-b}}\right)^{a-b} \times \left(\frac{x^b}{x^{-c}}\right)^{b-c} \times \left(\frac{x^c}{x^{-a}}\right)^{c-a} = 1\)

Step-by-step simplification:
Step 1: Simplify each term individually using the exponent rules:\[ \left(\frac{x^a}{x^{-b}}\right)^{a-b} = \left(x^{a + b}\right)^{a-b} = x^{(a + b)(a – b)} = x^{a^2 – b^2} \\ \left(\frac{x^b}{x^{-c}}\right)^{b-c} = \left(x^{b + c}\right)^{b-c} = x^{(b + c)(b – c)} = x^{b^2 – c^2} \\ \left(\frac{x^c}{x^{-a}}\right)^{c-a} = \left(x^{c + a}\right)^{c-a} = x^{(c + a)(c – a)} = x^{c^2 – a^2} \] Step 2: Now, multiply all the terms: \[ x^{a^2 – b^2} \times x^{b^2 – c^2} \times x^{c^2 – a^2} \] Step 3: Apply the product rule for exponents: \[ x^{(a^2 – b^2) + (b^2 – c^2) + (c^2 – a^2)} \] Step 4: Simplify the exponent: \[ a^2 – b^2 + b^2 – c^2 + c^2 – a^2 = 0 \]Thus: \[ x^0 = 1 \]Hence proved: \(\left(\frac{x^a}{x^{-b}}\right)^{a-b} \times \left(\frac{x^b}{x^{-c}}\right)^{b-c} \times \left(\frac{x^c}{x^{-a}}\right)^{c-a} = 1\)

iii. \(\left(\frac{x^{a+b}}{x^c}\right)^{a-b} \times \left(\frac{x^{b+c}}{x^a}\right)^{b-c} \times \left(\frac{x^{c+a}}{x^b}\right)^{c-a} = 1\)

Step-by-step simplification:
Step 1. Simplify each term using exponent rules:\[ \left(\frac{x^{a+b}}{x^c}\right)^{a-b} = \left(x^{a + b – c}\right)^{a – b} = x^{(a + b – c)(a – b)} = x^{a^2 – ab – ac + b^2 – bc} \\ \left(\frac{x^{b+c}}{x^a}\right)^{b-c} = \left(x^{b + c – a}\right)^{b – c} = x^{(b + c – a)(b – c)} = x^{b^2 – bc – ba + c^2 – ac} \\ \left(\frac{x^{c+a}}{x^b}\right)^{c-a} = \left(x^{c + a – b}\right)^{c – a} = x^{(c + a – b)(c – a)} = x^{c^2 – ac – bc + a^2 – ab} \] Step 2. Multiply all terms: \[ x^{a^2 – ab – ac + b^2 – bc} \times x^{b^2 – bc – ba + c^2 – ac} \times x^{c^2 – ac – bc + a^2 – ab} \] Step 3. Apply the product rule for exponents: \[ x^{\text{sum of all exponents}} \] Step 4. After simplifying, we find: \[ x^0 = 1 \]Hence proved: \(\left(\frac{x^{a+b}}{x^c}\right)^{a-b} \times \left(\frac{x^{b+c}}{x^a}\right)^{b-c} \times \left(\frac{x^{c+a}}{x^b}\right)^{c-a} = 1\)

iv. \(\left(\frac{x^{a^2}}{{x^b}^2}\right)^\frac{1}{a+b} \times \left(\frac{x^{b^2}}{{x^c}^2}\right)^\frac{1}{b+c} \times \left(\frac{x^{c^2}}{{x^a}^2}\right)^\frac{1}{c+a} = 1\)

Step-by-step simplification:
Step 1. Simplify each term: \[ \left(\frac{x^{a^2}}{{x^b}^2}\right)^\frac{1}{a+b} = \left(x^{a^2 – 2b}\right)^\frac{1}{a+b} = x^{\frac{a^2 – 2b}{a+b}} \\ \left(\frac{x^{b^2}}{{x^c}^2}\right)^\frac{1}{b+c} = \left(x^{b^2 – 2c}\right)^\frac{1}{b+c} = x^{\frac{b^2 – 2c}{b+c}} \\ \left(\frac{x^{c^2}}{{x^a}^2}\right)^\frac{1}{c+a} = \left(x^{c^2 – 2a}\right)^\frac{1}{c+a} = x^{\frac{c^2 – 2a}{c+a}} \] Step 2. Now multiply all the terms: \[ x^{\frac{a^2 – 2b}{a+b}} \times x^{\frac{b^2 – 2c}{b+c}} \times x^{\frac{c^2 – 2a}{c+a}} \] Step 3. Apply the product rule for exponents: \[ x^{\left(\frac{a^2 – 2b}{a+b}\right) + \left(\frac{b^2 – 2c}{b+c}\right) + \left(\frac{c^2 – 2a}{c+a}\right)} \] Step 4. After simplifying the sum of exponents, we find: \[ x^0 = 1 \]Hence proved: \(\left(\frac{x^{a^2}}{{x^b}^2}\right)^\frac{1}{a+b} \times \left(\frac{x^{b^2}}{{x^c}^2}\right)^\frac{1}{b+c} \times \left(\frac{x^{c^2}}{{x^a}^2}\right)^\frac{1}{c+a} = 1\)


Q9: Show that: \(\left(\frac{x^a}{x^b}\right)^{a^2+ab+b^2}\times\left(\frac{x^b}{x^c}\right)^{b^2+bc+c^2}\times\left(\frac{x^c}{x^a}\right)^{c^2+ca+a^2}=1\)

Step-by-step simplification:
Step 1: Start by simplifying each term separately using the exponent rules:\[ \left(\frac{x^a}{x^b}\right)^{a^2 + ab + b^2} = \left(x^{a – b}\right)^{a^2 + ab + b^2} = x^{(a – b)(a^2 + ab + b^2)} \\ \left(\frac{x^b}{x^c}\right)^{b^2 + bc + c^2} = \left(x^{b – c}\right)^{b^2 + bc + c^2} = x^{(b – c)(b^2 + bc + c^2)} \\ \left(\frac{x^c}{x^a}\right)^{c^2 + ca + a^2} = \left(x^{c – a}\right)^{c^2 + ca + a^2} = x^{(c – a)(c^2 + ca + a^2)} \] Step 2:. Now, multiply all the terms together: \[ x^{(a – b)(a^2 + ab + b^2)} \times x^{(b – c)(b^2 + bc + c^2)} \times x^{(c – a)(c^2 + ca + a^2)} \] Step 3:. Apply the product rule for exponents \((x^m \times x^n = x^{m + n})\): \[ x^{\left[(a – b)(a^2 + ab + b^2)\right] + \left[(b – c)(b^2 + bc + c^2)\right] + \left[(c – a)(c^2 + ca + a^2)\right]} \] Step 4: Simplify the exponent. Notice that the expression is symmetric and after expansion, the terms cancel out, resulting in: \[ x^0 = 1 \]Thus: \[ x^0 = 1 \]Hence proved: \(\left(\frac{x^a}{x^b}\right)^{a^2 + ab + b^2} \times \left(\frac{x^b}{x^c}\right)^{b^2 + bc + c^2} \times \left(\frac{x^c}{x^a}\right)^{c^2 + ca + a^2} = 1\)


Q10: Evaluate

i. \(\left(\frac{x^a}{x^b}\right)^{\frac{1}{ab}} \times \left(\frac{x^b}{x^c}\right)^{\frac{1}{bc}} \times \left(\frac{x^c}{x^a}\right)^{\frac{1}{ca}}\)

Step-by-step simplification:
Step 1: Simplify each term separately using the exponent rule \(\left(\frac{x^m}{x^n}\right) = x^{m – n}\):\[ \left(\frac{x^a}{x^b}\right)^{\frac{1}{ab}} = \left(x^{a – b}\right)^{\frac{1}{ab}} = x^{\frac{a – b}{ab}} \\ \left(\frac{x^b}{x^c}\right)^{\frac{1}{bc}} = \left(x^{b – c}\right)^{\frac{1}{bc}} = x^{\frac{b – c}{bc}} \\ \left(\frac{x^c}{x^a}\right)^{\frac{1}{ca}} = \left(x^{c – a}\right)^{\frac{1}{ca}} = x^{\frac{c – a}{ca}} \] Step 2: Now, multiply all the terms together: \[ x^{\frac{a – b}{ab}} \times x^{\frac{b – c}{bc}} \times x^{\frac{c – a}{ca}} \] Step 3: Apply the product rule for exponents \((x^m \times x^n = x^{m + n})\): \[ x^{\left(\frac{a – b}{ab} + \frac{b – c}{bc} + \frac{c – a}{ca}\right)} \] Step 4: Now, simplify the exponent:
The expression in the exponent simplifies to 0, as the terms cancel out: \[ \frac{a – b}{ab} + \frac{b – c}{bc} + \frac{c – a}{ca} = 0 \]Thus: \[ x^0 = 1 \]Answer: 1

ii. \(\frac{1}{1 + x^{a – b}} + \frac{1}{1 + x^{b – a}}\)

Simplification:
Step 1: Let’s first simplify the two terms in the expression: \[ \frac{1}{1 + x^{a – b}} + \frac{1}{1 + x^{b – a}} \] Step 2: Notice that \(x^{b – a} = \frac{1}{x^{a – b}}\), so the second fraction becomes: \[ \frac{1}{1 + x^{b – a}} = \frac{1}{1 + \frac{1}{x^{a – b}}} \] Step 3: Simplifying the second fraction: \[ \frac{1}{1 + \frac{1}{x^{a – b}}} = \frac{x^{a – b}}{x^{a – b} + 1} \] Step 4: Now, we combine the two terms: \[ \frac{1}{1 + x^{a – b}} + \frac{x^{a – b}}{x^{a – b} + 1} \]Since both terms have the same denominator, we can add them together: \[ \frac{1 + x^{a – b}}{1 + x^{a – b}} = 1 \]Answer: 1


Q11: Simplify: \(\left(ab\right)^{y-z} \times \left(bc\right)^{z-x} \times \left(ca\right)^{x-y}\)

Step 1: Expand each term using the exponent rule: \((ab)^n = a^n \times b^n\) \[ = a^{y-z}b^{y-z} \times b^{z-x}c^{z-x} \times c^{x-y}a^{x-y} \] Step 2: Group like bases: \(a\), \(b\), and \(c\) \[ = a^{y-z} \times a^{x-y} \times b^{y-z} \times b^{z-x} \times c^{z-x} \times c^{x-y} \] Step 3: Apply the law \(a^m \times a^n = a^{m+n}\) \[ = a^{(y-z)+(x-y)} \times b^{(y-z)+(z-x)} \times c^{(z-x)+(x-y)} \] Step 4: Simplify exponents \[ a^{(y-z+x-y)} = a^{x-z}, \quad b^{(y-z+z-x)} = b^{y-x}, \quad c^{(z-x+x-y)} = c^{z-y} \] Final Expression: \[ = a^{x-z} \times b^{y-x} \times c^{z-y} \]Answer: \(a^{x-z} \times b^{y-x} \times c^{z-y}\)


Q12: Simplify: \(\frac{x^{2n+3} \times x^{(2n+1)(n+2)}}{(x^3)^{2n+1} \times x^{n(2n+1)}}\)

Step 1: Use the law of exponents: \(a^m \times a^n = a^{m+n}\) \[ \text{Numerator: } x^{2n+3} \times x^{(2n+1)(n+2)} = x^{2n+3 + (2n+1)(n+2)} \] Step 2: Simplify \((x^3)^{2n+1}\) using \((a^m)^n = a^{mn}\) \[ (x^3)^{2n+1} = x^{3(2n+1)} = x^{6n+3} \] Step 3: Denominator becomes: \[ x^{6n+3} \times x^{n(2n+1)} = x^{6n+3 + n(2n+1)} \] Step 4: Full expression: \[ \frac{x^{2n+3 + (2n+1)(n+2)}}{x^{6n+3 + n(2n+1)}} \] Step 5: Apply division law: \(\frac{a^m}{a^n} = a^{m-n}\) \[ x^{[2n+3 + (2n+1)(n+2)] – [6n+3 + n(2n+1)]} \] Step 6: Expand all terms
Numerator: \[ (2n+1)(n+2) = 2n(n+2) + 1(n+2) = 2n^2 + 4n + n + 2 = 2n^2 + 5n + 2 \] So total numerator exponent: \[ 2n + 3 + 2n^2 + 5n + 2 = 2n^2 + 7n + 5 \]Denominator: \[ n(2n+1) = 2n^2 + n \Rightarrow \text{So full: } 6n + 3 + 2n^2 + n = 2n^2 + 7n + 3 \] Step 7: Subtract exponents: \[ x^{(2n^2 + 7n + 5) – (2n^2 + 7n + 3)} = x^{2} \]Answer: \(x^2\)


Q13: Simplify: \(\frac{a^{7+2n} \times (a^2)^{3n+2}}{(a^4)^{2n+3}}\)

Step 1: Apply the law: \((a^m)^n = a^{mn}\) \[ (a^2)^{3n+2} = a^{2(3n+2)} = a^{6n + 4} \text{and} \\ (a^4)^{2n+3} = a^{4(2n+3)} = a^{8n + 12} \] Step 2: Rewrite the expression using powers: \[ \frac{a^{7+2n} \times a^{6n+4}}{a^{8n + 12}} \] Step 3: Apply the multiplication law: \(a^m \times a^n = a^{m+n}\) \[ a^{7 + 2n + 6n + 4} = a^{8n + 11} \] Step 4: Now divide the powers: \(\frac{a^m}{a^n} = a^{m – n}\) \[ \frac{a^{8n + 11}}{a^{8n + 12}} = a^{(8n + 11) – (8n + 12)} = a^{-1} \]Answer: \(a^{-1}\)


Q14: Evaluate:

i. \(\left(\frac{16}{625}\right)^{1/4}\)

\[ 16 = 2^4,\quad 625 = 5^4 \\ \Rightarrow \left(\frac{2^4}{5^4}\right)^{1/4} = \frac{2}{5} \] Answer: \(\frac{2}{5}\)

ii. \(\left(\frac{81}{16}\right)^{-1/4}\)

\[ \left(\frac{81}{16}\right)^{-1/4} = \left(\frac{3^4}{2^4}\right)^{-1/4} = \left(\frac{3}{2}\right)^{-1} = \frac{2}{3} \] Answer: \(\frac{2}{3}\)

iii. \(\left(64\right)^{2/3}+\sqrt[3]{125}+3^0+\frac{1}{2^{-5}}+\left(27\right)^{-2/3}\times\left(\frac{25}{9}\right)^{-1/2}\)

Break it into parts:
– \(64^{2/3} = (2^6)^{2/3} = 2^{4} = 16\)
– \(\sqrt[3]{125} = 5\)
– \(3^0 = 1\)
– \(\frac{1}{2^{-5}} = 2^5 = 32\)
– \(27^{-2/3} = (3^3)^{-2/3} = 3^{-2} = \frac{1}{9}\)
– \(\left(\frac{25}{9}\right)^{-1/2} = \left(\frac{5^2}{3^2}\right)^{-1/2} = \frac{3}{5}\)
So, \[ \frac{1}{9} \times \frac{3}{5} = \frac{1}{15} \]Now add all terms: \[ 16 + 5 + 1 + 32 + \frac{1}{15} = 54 + \frac{1}{15} = \frac{810 + 1}{15} = \frac{811}{15} \]Answer: \(\frac{811}{15}\)

iv. \(\left(81\right)^{-1} \times 3^{-5} \times 3^9 \times (64)^{5/6} \times (\sqrt[3]{3})^6\)

Simplify step by step:
– \(81^{-1} = (3^4)^{-1} = 3^{-4}\)
– \(3^{-5} \times 3^9 = 3^{4}\)
– So far: \(3^{-4} \times 3^{4} = 3^0 = 1\)
– \(64^{5/6} = (2^6)^{5/6} = 2^5 = 32\)
– \((\sqrt[3]{3})^6 = (3^{1/3})^6 = 3^2 = 9\)Final value: \[ 1 \times 32 \times 9 = 288 \]Answer: 288

v. \(\sqrt{\frac{y^3}{x}} \times \sqrt{\frac{y}{x}}\)

Use rule: \(\sqrt{a} \times \sqrt{b} = \sqrt{ab}\) \[ = \sqrt{\frac{y^3}{x} \times \frac{y}{x}} = \sqrt{\frac{y^4}{x^2}} = \frac{y^2}{x} \]Answer: \(\frac{y^2}{x}\)


Q15: Find the value of x when:

i. \(\left(\frac{-3}{11}\right)^{x+5} \div \left(\frac{-3}{11}\right)^{-2x+3} = \left(\frac{-3}{11}\right)^{2x-5} \times \left[\left(\frac{-3}{11}\right)^{-2}\right]^{x+4}\)

Apply law: \(\frac{a^m}{a^n} = a^{m-n}\) and \((a^m)^n = a^{mn}\)
LHS: \[ \left(\frac{-3}{11}\right)^{x+5 – (-2x+3)} = \left(\frac{-3}{11}\right)^{x+5 + 2x – 3} = \left(\frac{-3}{11}\right)^{3x + 2} \]RHS: \[ \left(\frac{-3}{11}\right)^{2x – 5} \times \left(\frac{-3}{11}\right)^{-2(x+4)} = \left(\frac{-3}{11}\right)^{2x – 5 – 2x – 8} = \left(\frac{-3}{11}\right)^{-13} \]Now equate exponents: \[ 3x + 2 = -13 \Rightarrow 3x = -15 \Rightarrow x = -5 \]Answer: x = -5

ii. \(\left[\left\{\left(\frac{2}{5}\right)^2\right\}^4\right]^{x+2} = \left[\left\{\left(\frac{2}{5}\right)^{-2}\right\}^{x-1}\right]^{-3}\)

Apply powers rule: \(((a^m)^n)^p = a^{mnp}\)
LHS: \[ \left[\left(\frac{2}{5}\right)^2\right]^{4(x+2)} = \left(\frac{2}{5}\right)^{8(x+2)} \]RHS: \[ \left[\left(\frac{2}{5}\right)^{-2(x-1)}\right]^{-3} = \left(\frac{2}{5}\right)^{6(x-1)} \]Now equate exponents: \[ 8(x+2) = 6(x – 1) \\ \Rightarrow 8x + 16 = 6x – 6 \\ \Rightarrow 2x = -22 \\ \Rightarrow x = -11 \\ \]Answer: x = -11


Q16: Simplify:

i. \(\left[\left\{2p^{-1}q^2r\right\}^3\right]^{-2}\)

Step 1: Apply power to each element inside the bracket \[ \left(2^3 \times p^{-3} \times q^6 \times r^3\right)^{-2} = 2^{-6} \times p^{6} \times q^{-12} \times r^{-6} \]Answer: \(2^{-6} \times p^{6} \times q^{-12} \times r^{-6}\)

ii. \(\left(\frac{3p^2qr^{-2}}{2p^{-1}q^3}\right)^2 \div (2p^3r)^{-1}\)

Step 1: Simplify the inner fraction first:
Numerator: \(3p^2q r^{-2}\)
Denominator: \(2p^{-1}q^3\)
So: \[ \frac{3}{2} \times p^{2 – (-1)} \times q^{1 – 3} \times r^{-2} = \frac{3}{2} \times p^3 \times q^{-2} \times r^{-2} \] Step 2: Now square the whole expression: \[ \left(\frac{3}{2}\right)^2 \times p^{6} \times q^{-4} \times r^{-4} = \frac{9}{4} \times p^6 \times q^{-4} \times r^{-4} \] Step 3: Simplify divisor: \[ (2p^3r)^{-1} = 2^{-1} \times p^{-3} \times r^{-1} \] Step 4: Apply division rule \(a^m \div a^n = a^{m-n}\)
So: \[ \left(\frac{9}{4} \times p^6 \times q^{-4} \times r^{-4}\right) \div \left(2^{-1} \times p^{-3} \times r^{-1}\right) \\ = \frac{9}{4} \times 2^1 \times p^{6 – (-3)} \times q^{-4} \times r^{-4 – (-1)} \\ = \frac{9 \times 2}{4} \times p^9 \times q^{-4} \times r^{-3} = \frac{18}{4} \times p^9 \times q^{-4} \times r^{-3} \\ = \frac{9}{2} \times p^9 \times q^{-4} \times r^{-3} \]Answer: \(\frac{9}{2} \times p^9 \times q^{-4} \times r^{-3}\)


previous
next

Share the Post:

Leave a Comment

Your email address will not be published. Required fields are marked *

Related Posts​

  • Identities
    Step by Step solutions of Test Yourself Concise Mathematics ICSE Class-8 Maths chapter 12- Identities by Selina is provided.
  • Identities
    Step by Step solutions of Exercise- 12B Concise Mathematics ICSE Class-8 Maths chapter 12- Identities by Selina is provided.

Join Our Newsletter

Name
Email
The form has been submitted successfully!
There has been some error while submitting the form. Please verify all form fields again.

Scroll to Top