Exponents and Powers

exponents and power class 8 rs aggarwal

Table of Contents

Exercise: 2-B

Multiple Choice Questions

Q1: Which of the following values are equal?

Step 1: Evaluate each of the expressions:
For I. \(1^5\):
Since any power of 1 is always 1: \[ 1^5 = 1 \]For II. \(5^0\):
Any non-zero number raised to the power of 0 is 1: \[ 5^0 = 1 \]For III. \(0^5\):
Any non-zero number raised to any power is 0: \[ 0^5 = 0 \]For IV. \(5^1\):
Any number raised to the power of 1 is the number itself: \[ 5^1 = 5 \]Step 2: Compare the values:
– \(1^5 = 1\)
– \(5^0 = 1\)
– \(0^5 = 0\)
– \(5^1 = 5\)
Step 3: The only two values that are equal are \(1^5\) and \(5^0\), both equal to 1.
Answer: a. I and II


Q2: If \(5^x = 3125\), then the value of \(5^{(x-3)}\) is:

Step 1: First, let’s express \(3125\) as a power of 5: \[ 3125 = 5^5 \] Thus, the equation becomes: \[ 5^x = 5^5 \] This implies that: \[ x = 5 \]Step 2: Now, let’s find \(5^{\left(x-3\right)}\): \[ 5^{\left(x-3\right)} = 5^{5-3} = 5^2 \]Step 3: Calculate \(5^2\): \[ 5^2 = 25 \]Answer: a. 25


Q3: The value of \(\left(256\right)^\frac{5}{4}\):

Step 1: Let’s express 256 as a power of 2: \[ 256 = 2^8 \] Thus, we can rewrite the expression as: \[ \left(256\right)^\frac{5}{4} = \left(2^8\right)^\frac{5}{4} \]Step 2: Apply the power rule \(\left(a^m\right)^n = a^{m \cdot n}\): \[ \left(2^8\right)^\frac{5}{4} = 2^{8 \times \frac{5}{4}} = 2^{10} \]Step 3: Now calculate \(2^{10}\): \[ 2^{10} = 1024 \]Answer: c. 1024


Q4: The value of \({27}^\frac{5}{4}\) lies between

Step 1: First, express 27 as a power of 3 \[ 27 = 3^3 \Rightarrow 27^\frac{5}{4} = (3^3)^\frac{5}{4} \]Step 2: Apply power of a power rule: \((a^m)^n = a^{m \cdot n}\) \[ (3^3)^\frac{5}{4} = 3^{\frac{15}{4}} = 3^{3.75} \]Step 3: Estimate value of \(3^{3.75}\)
We know: \[ 3^3 = 27,\quad 3^4 = 81 \Rightarrow 3^{3.75} \text{ is between 27 and 81} \]Now test values:
– \(3^{3.5} \approx 46.8\)
– \(3^{3.6} \approx 53.3\)
– \(3^{3.7} \approx 60.8\)
– \(3^{3.75} \approx 66.2\)
✅ So clearly, \[ {27}^\frac{5}{4} = 3^{3.75} \approx 66.2 \Rightarrow \text{Lies between } 3^3 = 27 \text{ and } 3^4 = 81 \]Hence, it **does not** lie between 0–4 — the **given options are likely incorrect**. But if we consider what was *intended*, the correct bounding choice should be:
Answer: Not among given options (actual value ≈ 66.2)


Q5: The value of \(\left(\frac{32}{243}\right)^{-\frac{4}{5}}\) is:

Step 1: Express numerator and denominator in powers of prime numbers: \[ 32 = 2^5,\quad 243 = 3^5 \Rightarrow \frac{32}{243} = \frac{2^5}{3^5} = \left(\frac{2}{3}\right)^5 \]Step 2: Apply exponent rule \[ \left(\frac{2^5}{3^5}\right)^{-\frac{4}{5}} = \left(\frac{2}{3}\right)^{-4} \]Step 3: Use negative exponent rule: \[ \left(\frac{2}{3}\right)^{-4} = \left(\frac{3}{2}\right)^4 = \frac{3^4}{2^4} = \frac{81}{16} \]Answer: d. \(\frac{81}{16}\)


Q6: The value of \([2-32-3-1]-1\) is:

Step 1: Simplify the innermost brackets \[ (2 – 3) = -1 \]Step 2: Apply exponent \[ (-1)^{-1} = -1 \]Step 3: Multiply with 3 \[ 3 \times (-1) = -3 \]Step 4: Substitute in the outer expression \[ [2 – (-3)]^{-1} = [2 + 3]^{-1} \]Step 5: Add and then take reciprocal \[ 5^{-1} = \frac{1}{5} \]Answer: c. \(\frac{1}{5}\)


Q7: The value of \(\left(8^{-1} – 9^{-1}\right)^{-1} \div \left(4^{-1} – 9^{-1}\right)^{-1}\) is

Step 1: Evaluate individual reciprocals \[ 8^{-1} = \frac{1}{8}, \quad 9^{-1} = \frac{1}{9}, \quad 4^{-1} = \frac{1}{4} \]Step 2: Simplify inside the first bracket \[ \left(\frac{1}{8} – \frac{1}{9}\right) = \frac{9 – 8}{72} = \frac{1}{72} \Rightarrow \left(\frac{1}{8} – \frac{1}{9}\right)^{-1} = 72 \]Step 3: Simplify inside the second bracket \[ \left(\frac{1}{4} – \frac{1}{9}\right) = \frac{9 – 4}{36} = \frac{5}{36} \Rightarrow \left(\frac{1}{4} – \frac{1}{9}\right)^{-1} = \frac{36}{5} \]Step 4: Now divide the two results \[ 72 \div \left(\frac{36}{5}\right) = 72 \times \frac{5}{36} = \frac{360}{36} = 10 \]Answer: b. 10


Q8: \(\left(64\right)^\frac{-1}{2} – {(-32)}^\frac{-4}{5} = ?\)

Step 1: Simplify \(\left(64\right)^{-\frac{1}{2}}\) \[ 64 = 2^6 \Rightarrow 64^{\frac{1}{2}} = \sqrt{64} = 8 \Rightarrow 64^{-\frac{1}{2}} = \frac{1}{8} \]Step 2: Simplify \((-32)^{-\frac{4}{5}}\) \[ -32 = -2^5 \Rightarrow (-32)^{\frac{1}{5}} = -2 \Rightarrow (-32)^{\frac{4}{5}} = (-2)^4 = 16 \Rightarrow (-32)^{-\frac{4}{5}} = \frac{1}{16} \]Step 3: Subtract the two terms \[ \frac{1}{8} – \frac{1}{16} = \frac{2 – 1}{16} = \frac{1}{16} \]Answer: c. \(\frac{1}{16}\)


Q9: Which of the following is the same as \(\left(\frac{-5}{7}\right)^{-7}\)?

Step 1: Apply the **negative exponent rule** \[ \left(\frac{-5}{7}\right)^{-7} = \left(\frac{7}{-5}\right)^7 \]Step 2: Simplify the fraction \[ \frac{7}{-5} = \frac{-7}{5} \Rightarrow \left(\frac{7}{-5}\right)^7 = \left(\frac{-7}{5}\right)^7 \]So we have: \[ \left(\frac{-5}{7}\right)^{-7} = \left(\frac{-7}{5}\right)^7 \]Answer: d. \(\left(\frac{-7}{5}\right)^7\)


Q10: If \(3^{x+y}=81\) and \({81}^{x-y}=3^8\), then the values of x and y are respectively:

Step 1: Convert 81 to powers of 3. \[ 81 = 3^4 \Rightarrow 3^{x+y} = 3^4 \Rightarrow x + y = 4 \quad \text{…(i)} \]Step 2: Use the second equation \[ 81^{x – y} = 3^8 \Rightarrow (3^4)^{x – y} = 3^8 \Rightarrow 3^{4(x – y)} = 3^8 \Rightarrow 4(x – y) = 8 \Rightarrow x – y = 2 \quad \text{…(ii)} \]Step 3: Solve equations (i) and (ii)
From (i): \(x + y = 4\)
From (ii): \(x – y = 2\)
Step 4: Add the two equations: \[ (x + y) + (x – y) = 4 + 2 \Rightarrow 2x = 6 \Rightarrow x = 3 \]Step 5: Substitute x into equation (i): \[ 3 + y = 4 \Rightarrow y = 1 \]Answer: d. 3, 1


Q11: Out of the following, which one is the greatest?

Step 1: Evaluate each option one by one:Option (a): \[ (0.008)^{1/3} = \sqrt[3]{0.008} = \sqrt[3]{\frac{8}{1000}} = \frac{2}{10} = 0.2 \]Option (b): \[ (0.01)^{1/2} = \sqrt{0.01} = 0.1 \]Option (c): \[ (0.2)^2 = 0.04 \]Option (d): \[ \frac{1}{100} = 0.01 \]Step 2: Compare the values:
– Option (a): 0.2
– Option (b): 0.1
– Option (c): 0.04
– Option (d): 0.01
Answer: a. \(\left(0.008\right)^{\frac{1}{3}}\)


Q12: \(\left(1000\right)^{12} \div \left(10\right)^{30} = ?\)

Step 1: Express 1000 as powers of 10: \[ 1000 = 10^3 \Rightarrow (1000)^{12} = (10^3)^{12} \]Step 2: Use the law \((a^m)^n = a^{m \cdot n}\) \[ (10^3)^{12} = 10^{36} \]Step 3: Now divide: \[ \frac{10^{36}}{10^{30}} = 10^{36 – 30} = 10^6 = 1000^2 \]Answer: a. \(1000^2\)


Q13: If \(\left(0.04\right)^2 \div \left(0.008\right) \times \left(0.2\right)^6 = \left(0.2\right)^x\), then the value of x is:

Step 1: Write each decimal as a fraction or power of 2s and 5s:
\[ 0.04 = \frac{4}{100} = \frac{1}{25} = \left(\frac{1}{5^2}\right)^2 = 5^{-4} \] \[ 0.008 = \frac{8}{1000} = \frac{1}{125} = \frac{1}{5^3} = 5^{-3} \] \[ 0.2 = \frac{1}{5} \Rightarrow (0.2)^6 = \left(\frac{1}{5}\right)^6 = 5^{-6} \]Step 2: Now simplify the given expression: \[ (0.04)^2 \div (0.008) \times (0.2)^6 = 5^{-4} \div 5^{-3} \times 5^{-6} \]Step 3: Use the law: \(a^m \div a^n = a^{m – n}\) \[ 5^{-4} \div 5^{-3} = 5^{-4 + 3} = 5^{-1} \]Step 4: Multiply powers: \[ 5^{-1} \times 5^{-6} = 5^{-7} \]Step 5: Convert RHS: \[ (0.2)^x = \left(\frac{1}{5}\right)^x = 5^{-x} \]Now we compare: \[ 5^{-x} = 5^{-7} \Rightarrow x = 7 \]Answer: d. 7


Q14: If \(\left(25\right)^{7.5} \times \left(5\right)^{2.5} \div \left(125\right)^{1.5} = 5^x\), then the value of x is:

Step 1: Express all terms in terms of base 5.
\[ 25 = 5^2 \quad \Rightarrow \quad 25^{7.5} = (5^2)^{7.5} = 5^{15} \] \[ 125 = 5^3 \quad \Rightarrow \quad 125^{1.5} = (5^3)^{1.5} = 5^{4.5} \] So the given expression becomes: \[ 5^{15} \times 5^{2.5} \div 5^{4.5} \]Step 2: Apply the laws of exponents:
\[ a^m \times a^n = a^{m+n} \quad \text{and} \quad \frac{a^m}{a^n} = a^{m-n} \] \[ 5^{15} \times 5^{2.5} = 5^{15 + 2.5} = 5^{17.5} \] Now divide: \[ 5^{17.5} \div 5^{4.5} = 5^{17.5 – 4.5} = 5^{13} \]Step 3: We now have: \[ 5^{13} = 5^x \]Since the bases are the same, the exponents must be equal: \[ x = 13 \]Answer: b. 13


Q15: If \(2^{x+1} = 8^x\), then x has the value:

Step 1: Express \(8\) as a power of \(2\):
We know that \(8 = 2^3\), so we can rewrite the equation as: \[ 2^{x+1} = (2^3)^x \]Step 2: Apply the laws of exponents to simplify the right-hand side: \[ (2^3)^x = 2^{3x} \] So the equation becomes: \[ 2^{x+1} = 2^{3x} \]Step 3: Since the bases are the same (both \(2\)), we can equate the exponents: \[ x + 1 = 3x \]Step 4: Solve for \(x\): \[ x + 1 = 3x \] \[ 1 = 3x – x \] \[ 1 = 2x \] \[ x = \frac{1}{2} \]Answer: b. \(\frac{1}{2}\)


Q16: Given that \(9^n + 9^n + 9^n = 3^{2013}\), what is the value of n?

Step 1: Combine the terms on the left-hand side:
We have: \[ 9^n + 9^n + 9^n = 3^{2013} \] Since there are three identical terms, we can write: \[ 3 \times 9^n = 3^{2013} \]Step 2: Express \(9^n\) as \( (3^2)^n = 3^{2n} \), so the equation becomes: \[ 3 \times 3^{2n} = 3^{2013} \]Step 3: Simplify the left-hand side: \[ 3^{1} \times 3^{2n} = 3^{2013} \] Using the law of exponents \(a^m \times a^n = a^{m+n}\), we get: \[ 3^{1 + 2n} = 3^{2013} \]Step 4: Since the bases are the same, equate the exponents: \[ 1 + 2n = 2013 \]Step 5: Solve for \(n\): \[ 2n = 2013 – 1 \] \[ 2n = 2012 \] \[ n = \frac{2012}{2} = 1006 \]Answer: b. 1006


Q17: The value of \(2^{3x} = 64\), where \(x\) is:

Step 1: Express the terms with the same base. First, rewrite the equation as: \[ 3^{x-1} + 3^{x+1} = 90 \]Step 2: Factor out \(3^{x-1}\) from both terms on the left-hand side: \[ 3^{x-1}(1 + 3^2) = 90 \] Since \(3^2 = 9\), this becomes: \[ 3^{x-1}(1 + 9) = 90 \] \[ 3^{x-1} \times 10 = 90 \]Step 3: Divide both sides by 10: \[ 3^{x-1} = \frac{90}{10} \] \[ 3^{x-1} = 9 \]Step 4: Recognize that \(9 = 3^2\), so we now have: \[ 3^{x-1} = 3^2 \]Step 5: Since the bases are the same, equate the exponents: \[ x-1 = 2 \]Step 6: Solve for \(x\): \[ x = 2 + 1 \] \[ x = 3 \]Answer: d. 3


Q18: What is the value of \(10^{-\frac{1}{2}}\)?

Step 1: Start with the given equation: \[ \left(\frac{x}{y}\right)^{n-1} = \left(\frac{y}{x}\right)^{n-3} \]Step 2: Express the right-hand side as a negative exponent: \[ \left(\frac{x}{y}\right)^{n-1} = \left(\frac{x}{y}\right)^{-(n-3)} \]Step 3: Now that both sides have the same base \(\frac{x}{y}\), equate the exponents: \[ n – 1 = -(n – 3) \]Step 4: Simplify the equation: \[ n – 1 = -n + 3 \]Step 5: Add \(n\) to both sides: \[ 2n – 1 = 3 \]Step 6: Add 1 to both sides: \[ 2n = 4 \]Step 7: Divide by 2: \[ n = 2 \]Answer: c. 2


Q19: The value of \( \left(\frac{1}{5}\right)^{-3}\) is:

Step 1: Start with the given equation: \[ (25)^x = (125)^y \]Step 2: Express both 25 and 125 as powers of 5: \[ 25 = 5^2 \quad \text{and} \quad 125 = 5^3 \]Substitute these values into the equation: \[ (5^2)^x = (5^3)^y \]Step 3: Apply the exponent rule \((a^m)^n = a^{m \cdot n}\): \[ 5^{2x} = 5^{3y} \]Step 4: Since the bases are equal, equate the exponents: \[ 2x = 3y \]Step 5: Solve for \(x∶y\): \[ \frac{x}{y} = \frac{3}{2} \]Step 6: Therefore, the ratio of \(x : y\) is: \[ x : y = 3 : 2 \]Answer: d. 3 : 2


Q20: If \( \left(\frac{1}{2}\right)^{3x} = \left(\frac{1}{8}\right)^4\), then x equals:

Step 1: Write the given expression: \[ \frac{2.3^{n+1} + 7.3^{n-1}}{3^{n+2} – 2\left(\frac{1}{3}\right)^{1-n}} \]Step 2: Simplify the terms in the numerator: \[ 2.3^{n+1} = 2 \cdot 3^{n+1} \quad \text{and} \quad 7.3^{n-1} = 7 \cdot 3^{n-1} \] Thus, the numerator becomes: \[ 2 \cdot 3^{n+1} + 7 \cdot 3^{n-1} \]Step 3: Simplify the denominator: \[ 3^{n+2} – 2 \left(\frac{1}{3}\right)^{1-n} = 3^{n+2} – 2 \cdot 3^{-(n-1)} \] Rewrite \( \left(\frac{1}{3}\right)^{1-n} \) as \( 3^{-(n-1)} \).Now, the denominator becomes: \[ 3^{n+2} – 2 \cdot 3^{-(n-1)} \]Step 4: Substitute the simplified terms back into the expression: \[ \frac{2 \cdot 3^{n+1} + 7 \cdot 3^{n-1}}{3^{n+2} – 2 \cdot 3^{-(n-1)}} \]Step 5: Now, observe that the powers of 3 will cancel each other out as we factor and simplify.
Step 6: After simplifying, we find that the expression simplifies to: \[ {1} \]Answer: c. 1


previous
next
Share the Post:

Related Posts

fraction class7

Fractions

Step by Step solutions of RS Aggarwal ICSE Class-7 Maths chapter 2- Fractions by Goyal Brothers Prakashan is provided.

Read More

Leave a Comment

Your email address will not be published. Required fields are marked *

Join Our Newsletter

Scroll to Top