Exponents and Powers

exponents and power class 8 rs aggarwal

Step by Step solutions of RS Aggarwal ICSE Class-8 Maths chapter 2- Exponents and Powers by Goyal Brothers Prakashan is provided

Table of Contents

Exercise: 2-B

Multiple Choice Questions

Q1: Which of the following values are equal?

Step 1: Evaluate each of the expressions:
For I. \(1^5\):
Since any power of 1 is always 1: \[ 1^5 = 1 \]For II. \(5^0\):
Any non-zero number raised to the power of 0 is 1: \[ 5^0 = 1 \]For III. \(0^5\):
Any non-zero number raised to any power is 0: \[ 0^5 = 0 \]For IV. \(5^1\):
Any number raised to the power of 1 is the number itself: \[ 5^1 = 5 \]Step 2: Compare the values:
– \(1^5 = 1\)
– \(5^0 = 1\)
– \(0^5 = 0\)
– \(5^1 = 5\)
Step 3: The only two values that are equal are \(1^5\) and \(5^0\), both equal to 1.
Answer: a. I and II


Q2: If \(5^x = 3125\), then the value of \(5^{(x-3)}\) is:

Step 1: First, let’s express \(3125\) as a power of 5: \[ 3125 = 5^5 \] Thus, the equation becomes: \[ 5^x = 5^5 \] This implies that: \[ x = 5 \]Step 2: Now, let’s find \(5^{\left(x-3\right)}\): \[ 5^{\left(x-3\right)} = 5^{5-3} = 5^2 \]Step 3: Calculate \(5^2\): \[ 5^2 = 25 \]Answer: a. 25


Q3: The value of \(\left(256\right)^\frac{5}{4}\):

Step 1: Let’s express 256 as a power of 2: \[ 256 = 2^8 \] Thus, we can rewrite the expression as: \[ \left(256\right)^\frac{5}{4} = \left(2^8\right)^\frac{5}{4} \]Step 2: Apply the power rule \(\left(a^m\right)^n = a^{m \cdot n}\): \[ \left(2^8\right)^\frac{5}{4} = 2^{8 \times \frac{5}{4}} = 2^{10} \]Step 3: Now calculate \(2^{10}\): \[ 2^{10} = 1024 \]Answer: c. 1024


Q4: The value of \({27}^\frac{5}{4}\) lies between

Step 1: First, express 27 as a power of 3 \[ 27 = 3^3 \Rightarrow 27^\frac{5}{4} = (3^3)^\frac{5}{4} \]Step 2: Apply power of a power rule: \((a^m)^n = a^{m \cdot n}\) \[ (3^3)^\frac{5}{4} = 3^{\frac{15}{4}} = 3^{3.75} \]Step 3: Estimate value of \(3^{3.75}\)
We know: \[ 3^3 = 27,\quad 3^4 = 81 \\ \Rightarrow 3^{3.75} \text{ is between 27 and 81} \]Now test values:
– \(3^{3.5} \approx 46.8\)
– \(3^{3.6} \approx 53.3\)
– \(3^{3.7} \approx 60.8\)
– \(3^{3.75} \approx 66.2\)
So clearly, \[ {27}^\frac{5}{4} = 3^{3.75} \approx 66.2 \\ \Rightarrow \text{Lies between } 3^3 = 27 \text{ and } 3^4 = 81 \]Hence, it **does not** lie between 0–4 — the **given options are likely incorrect**. But if we consider what was *intended*, the correct bounding choice should be:
Answer: Not among given options (actual value ≈ 66.2)


Q5: The value of \(\left(\frac{32}{243}\right)^{-\frac{4}{5}}\) is:

Step 1: Express numerator and denominator in powers of prime numbers: \[ 32 = 2^5,\quad 243 = 3^5 \\ \Rightarrow \frac{32}{243} = \frac{2^5}{3^5} = \left(\frac{2}{3}\right)^5 \]Step 2: Apply exponent rule \[ \left(\frac{2^5}{3^5}\right)^{-\frac{4}{5}} = \left(\frac{2}{3}\right)^{-4} \]Step 3: Use negative exponent rule: \[ \left(\frac{2}{3}\right)^{-4} = \left(\frac{3}{2}\right)^4 = \frac{3^4}{2^4} = \frac{81}{16} \]Answer: d. \(\frac{81}{16}\)


Q6: The value of \([2-32-3-1]-1\) is:

Step 1: Simplify the innermost brackets \[ (2 – 3) = -1 \]Step 2: Apply exponent \[ (-1)^{-1} = -1 \]Step 3: Multiply with 3 \[ 3 \times (-1) = -3 \]Step 4: Substitute in the outer expression \[ [2 – (-3)]^{-1} = [2 + 3]^{-1} \]Step 5: Add and then take reciprocal \[ 5^{-1} = \frac{1}{5} \]Answer: c. \(\frac{1}{5}\)


Q7: The value of \(\left(8^{-1} – 9^{-1}\right)^{-1} \div \left(4^{-1} – 9^{-1}\right)^{-1}\) is

Step 1: Evaluate individual reciprocals \[ 8^{-1} = \frac{1}{8}, \quad 9^{-1} = \frac{1}{9}, \quad 4^{-1} = \frac{1}{4} \]Step 2: Simplify inside the first bracket \[ \left(\frac{1}{8} – \frac{1}{9}\right) = \frac{9 – 8}{72} = \frac{1}{72} \\ \Rightarrow \left(\frac{1}{8} – \frac{1}{9}\right)^{-1} = 72 \]Step 3: Simplify inside the second bracket \[ \left(\frac{1}{4} – \frac{1}{9}\right) = \frac{9 – 4}{36} = \frac{5}{36} \\ \Rightarrow \left(\frac{1}{4} – \frac{1}{9}\right)^{-1} = \frac{36}{5} \]Step 4: Now divide the two results \[ 72 \div \left(\frac{36}{5}\right) = 72 \times \frac{5}{36} = \frac{360}{36} = 10 \]Answer: b. 10


Q8: \(\left(64\right)^\frac{-1}{2} – {(-32)}^\frac{-4}{5} = ?\)

Step 1: Simplify \(\left(64\right)^{-\frac{1}{2}}\) \[ 64 = 2^6 \Rightarrow 64^{\frac{1}{2}} = \sqrt{64} = 8 \\ \Rightarrow 64^{-\frac{1}{2}} = \frac{1}{8} \]Step 2: Simplify \((-32)^{-\frac{4}{5}}\) \[ -32 = -2^5 \Rightarrow (-32)^{\frac{1}{5}} = -2 \Rightarrow (-32)^{\frac{4}{5}} = (-2)^4 = 16 \Rightarrow (-32)^{-\frac{4}{5}} = \frac{1}{16} \]Step 3: Subtract the two terms \[ \frac{1}{8} – \frac{1}{16} = \frac{2 – 1}{16} = \frac{1}{16} \]Answer: c. \(\frac{1}{16}\)


Q9: Which of the following is the same as \(\left(\frac{-5}{7}\right)^{-7}\)?

Step 1: Apply the **negative exponent rule** \[ \left(\frac{-5}{7}\right)^{-7} = \left(\frac{7}{-5}\right)^7 \]Step 2: Simplify the fraction \[ \frac{7}{-5} = \frac{-7}{5} \\ \Rightarrow \left(\frac{7}{-5}\right)^7 = \left(\frac{-7}{5}\right)^7 \]So we have: \[ \left(\frac{-5}{7}\right)^{-7} = \left(\frac{-7}{5}\right)^7 \]Answer: d. \(\left(\frac{-7}{5}\right)^7\)


Q10: If \(3^{x+y}=81\) and \({81}^{x-y}=3^8\), then the values of x and y are respectively:

Step 1: Convert 81 to powers of 3. \[ 81 = 3^4 \\ \Rightarrow 3^{x+y} = 3^4 \Rightarrow x + y = 4 \quad \text{…(i)} \]Step 2: Use the second equation \[ 81^{x – y} = 3^8 \Rightarrow (3^4)^{x – y} = 3^8 \\ \Rightarrow 3^{4(x – y)} = 3^8 \\ \Rightarrow 4(x – y) = 8 \\ \Rightarrow x – y = 2 \quad \text{…(ii)} \]Step 3: Solve equations (i) and (ii)
From (i): \(x + y = 4\)
From (ii): \(x – y = 2\)
Step 4: Add the two equations: \[ (x + y) + (x – y) = 4 + 2 \Rightarrow 2x = 6 \Rightarrow x = 3 \]Step 5: Substitute x into equation (i): \[ 3 + y = 4 \Rightarrow y = 1 \]Answer: d. 3, 1


Q11: Out of the following, which one is the greatest?

Step 1: Evaluate each option one by one:Option (a): \[ (0.008)^{1/3} = \sqrt[3]{0.008} = \sqrt[3]{\frac{8}{1000}} = \frac{2}{10} = 0.2 \]Option (b): \[ (0.01)^{1/2} = \sqrt{0.01} = 0.1 \]Option (c): \[ (0.2)^2 = 0.04 \]Option (d): \[ \frac{1}{100} = 0.01 \]Step 2: Compare the values:
– Option (a): 0.2
– Option (b): 0.1
– Option (c): 0.04
– Option (d): 0.01
Answer: a. \(\left(0.008\right)^{\frac{1}{3}}\)


Q12: \(\left(1000\right)^{12} \div \left(10\right)^{30} = ?\)

Step 1: Express 1000 as powers of 10: \[ 1000 = 10^3 \Rightarrow (1000)^{12} = (10^3)^{12} \]Step 2: Use the law \((a^m)^n = a^{m \cdot n}\) \[ (10^3)^{12} = 10^{36} \]Step 3: Now divide: \[ \frac{10^{36}}{10^{30}} = 10^{36 – 30} = 10^6 = 1000^2 \]Answer: a. \(1000^2\)


Q13: If \(\left(0.04\right)^2 \div \left(0.008\right) \times \left(0.2\right)^6 = \left(0.2\right)^x\), then the value of x is:

Step 1: Write each decimal as a fraction or power of 2s and 5s:
\[ 0.04 = \frac{4}{100} = \frac{1}{25} = \left(\frac{1}{5^2}\right)^2 = 5^{-4} \\ 0.008 = \frac{8}{1000} = \frac{1}{125} = \frac{1}{5^3} = 5^{-3} \\ 0.2 = \frac{1}{5} \\ \Rightarrow (0.2)^6 = \left(\frac{1}{5}\right)^6 = 5^{-6} \]Step 2: Now simplify the given expression: \[ (0.04)^2 \div (0.008) \times (0.2)^6 = 5^{-4} \div 5^{-3} \times 5^{-6} \]Step 3: Use the law: \(a^m \div a^n = a^{m – n}\) \[ 5^{-4} \div 5^{-3} = 5^{-4 + 3} = 5^{-1} \]Step 4: Multiply powers: \[ 5^{-1} \times 5^{-6} = 5^{-7} \]Step 5: Convert RHS: \[ (0.2)^x = \left(\frac{1}{5}\right)^x = 5^{-x} \]Now we compare: \[ 5^{-x} = 5^{-7} \Rightarrow x = 7 \]Answer: d. 7


Q14: If \(\left(25\right)^{7.5} \times \left(5\right)^{2.5} \div \left(125\right)^{1.5} = 5^x\), then the value of x is:

Step 1: Express all terms in terms of base 5.
\[ 25 = 5^2 \quad \Rightarrow \quad 25^{7.5} = (5^2)^{7.5} = 5^{15} \\ 125 = 5^3 \quad \Rightarrow \quad 125^{1.5} = (5^3)^{1.5} = 5^{4.5} \] So the given expression becomes: \[ 5^{15} \times 5^{2.5} \div 5^{4.5} \]Step 2: Apply the laws of exponents:
\[ a^m \times a^n = a^{m+n} \quad \text{and} \quad \frac{a^m}{a^n} = a^{m-n} \\ 5^{15} \times 5^{2.5} = 5^{15 + 2.5} = 5^{17.5} \] Now divide: \[ 5^{17.5} \div 5^{4.5} = 5^{17.5 – 4.5} = 5^{13} \]Step 3: We now have: \[ 5^{13} = 5^x \]Since the bases are the same, the exponents must be equal: \[ x = 13 \]Answer: b. 13


Q15: If \(2^{x+1} = 8^x\), then x has the value:

Step 1: Express \(8\) as a power of \(2\):
We know that \(8 = 2^3\), so we can rewrite the equation as: \[ 2^{x+1} = (2^3)^x \]Step 2: Apply the laws of exponents to simplify the right-hand side: \[ (2^3)^x = 2^{3x} \] So the equation becomes: \[ 2^{x+1} = 2^{3x} \]Step 3: Since the bases are the same (both \(2\)), we can equate the exponents: \[ x + 1 = 3x \]Step 4: Solve for \(x\): \[ x + 1 = 3x \\ 1 = 3x – x \\ 1 = 2x \\ x = \frac{1}{2} \]Answer: b. \(\frac{1}{2}\)


Q16: Given that \(9^n + 9^n + 9^n = 3^{2013}\), what is the value of n?

Step 1: Combine the terms on the left-hand side:
We have: \[ 9^n + 9^n + 9^n = 3^{2013} \] Since there are three identical terms, we can write: \[ 3 \times 9^n = 3^{2013} \]Step 2: Express \(9^n\) as \( (3^2)^n = 3^{2n} \), so the equation becomes: \[ 3 \times 3^{2n} = 3^{2013} \]Step 3: Simplify the left-hand side: \[ 3^{1} \times 3^{2n} = 3^{2013} \] Using the law of exponents \(a^m \times a^n = a^{m+n}\), we get: \[ 3^{1 + 2n} = 3^{2013} \]Step 4: Since the bases are the same, equate the exponents: \[ 1 + 2n = 2013 \]Step 5: Solve for \(n\): \[ 2n = 2013 – 1 \\ 2n = 2012 \\ n = \frac{2012}{2} = 1006 \]Answer: b. 1006


Q17: The value of \(2^{3x} = 64\), where \(x\) is:

Step 1: Express the terms with the same base. First, rewrite the equation as: \[ 3^{x-1} + 3^{x+1} = 90 \]Step 2: Factor out \(3^{x-1}\) from both terms on the left-hand side: \[ 3^{x-1}(1 + 3^2) = 90 \] Since \(3^2 = 9\), this becomes: \[ 3^{x-1}(1 + 9) = 90 \\ 3^{x-1} \times 10 = 90 \]Step 3: Divide both sides by 10: \[ 3^{x-1} = \frac{90}{10} \\ 3^{x-1} = 9 \]Step 4: Recognize that \(9 = 3^2\), so we now have: \[ 3^{x-1} = 3^2 \]Step 5: Since the bases are the same, equate the exponents: \[ x-1 = 2 \]Step 6: Solve for \(x\): \[ x = 2 + 1 \\ x = 3 \]Answer: d. 3


Q18: What is the value of \(10^{-\frac{1}{2}}\)?

Step 1: Start with the given equation: \[ \left(\frac{x}{y}\right)^{n-1} = \left(\frac{y}{x}\right)^{n-3} \]Step 2: Express the right-hand side as a negative exponent: \[ \left(\frac{x}{y}\right)^{n-1} = \left(\frac{x}{y}\right)^{-(n-3)} \]Step 3: Now that both sides have the same base \(\frac{x}{y}\), equate the exponents: \[ n – 1 = -(n – 3) \]Step 4: Simplify the equation: \[ n – 1 = -n + 3 \]Step 5: Add \(n\) to both sides: \[ 2n – 1 = 3 \]Step 6: Add 1 to both sides: \[ 2n = 4 \]Step 7: Divide by 2: \[ n = 2 \]Answer: c. 2


Q19: The value of \( \left(\frac{1}{5}\right)^{-3}\) is:

Step 1: Start with the given equation: \[ (25)^x = (125)^y \]Step 2: Express both 25 and 125 as powers of 5: \[ 25 = 5^2 \quad \text{and} \quad 125 = 5^3 \]Substitute these values into the equation: \[ (5^2)^x = (5^3)^y \]Step 3: Apply the exponent rule \((a^m)^n = a^{m \cdot n}\): \[ 5^{2x} = 5^{3y} \]Step 4: Since the bases are equal, equate the exponents: \[ 2x = 3y \]Step 5: Solve for \(x∶y\): \[ \frac{x}{y} = \frac{3}{2} \]Step 6: Therefore, the ratio of \(x : y\) is: \[ x : y = 3 : 2 \]Answer: d. 3 : 2


Q20: If \( \left(\frac{1}{2}\right)^{3x} = \left(\frac{1}{8}\right)^4\), then x equals:

Step 1: Write the given expression: \[ \frac{2.3^{n+1} + 7.3^{n-1}}{3^{n+2} – 2\left(\frac{1}{3}\right)^{1-n}} \]Step 2: Simplify the terms in the numerator: \[ 2.3^{n+1} = 2 \cdot 3^{n+1} \quad \text{and} \quad 7.3^{n-1} = 7 \cdot 3^{n-1} \] Thus, the numerator becomes: \[ 2 \cdot 3^{n+1} + 7 \cdot 3^{n-1} \]Step 3: Simplify the denominator: \[ 3^{n+2} – 2 \left(\frac{1}{3}\right)^{1-n} = 3^{n+2} – 2 \cdot 3^{-(n-1)} \] Rewrite \( \left(\frac{1}{3}\right)^{1-n} \) as \( 3^{-(n-1)} \).Now, the denominator becomes: \[ 3^{n+2} – 2 \cdot 3^{-(n-1)} \]Step 4: Substitute the simplified terms back into the expression: \[ \frac{2 \cdot 3^{n+1} + 7 \cdot 3^{n-1}}{3^{n+2} – 2 \cdot 3^{-(n-1)}} \]Step 5: Now, observe that the powers of 3 will cancel each other out as we factor and simplify.
Step 6: After simplifying, we find that the expression simplifies to: \[ {1} \]Answer: c. 1


previous
next

Share the Post:

Leave a Comment

Your email address will not be published. Required fields are marked *

Related Posts​

  • Linear Inequations
    Step by Step solutions of Exercise- Competency Focused Questions of RS Aggarwal ICSE Class-8 Maths chapter 16- Linear Inequations by Goyal Brothers Prakashan is provided.
  • Linear Inequations
    Step by Step solutions of Exercise- Assertion-Reason Questions of RS Aggarwal ICSE Class-8 Maths chapter 16- Linear Inequations by Goyal Brothers Prakashan is provided.

Join Our Newsletter

Name
Email
The form has been submitted successfully!
There has been some error while submitting the form. Please verify all form fields again.

Scroll to Top