Algebraic Identities

algebraic identities class 8 rs aggarwal

Step by Step solutions of RS Aggarwal ICSE Class-8 Maths chapter 13- Algebraic Identities by Goyal Brothers Prakashan is provided

Table of Contents

Exercise: 13-A

Q1: Find the following products:

i.  \((x+5)(x+7)\)

Step 1: Use the identity \((x+a)(x+b)=x^2+(a+b)x+ab\).
Step 2: Here \(a=5\) and \(b=7\) ⟹ \(a+b=12\) and \(ab=35\).
Step 3: Substitute in the identity: \(x^2+(12)x+35=x^2+12x+35\).
Answer:\(x^2+12x+35\)

ii.  \((b+2)(b+9)\)

Step 1: Use \((b+m)(b+n)=b^2+(m+n)b+mn\).
Step 2: Here \(m=2\) and \(n=9\) ⟹ \(m+n=11\) and \(mn=18\).
Step 3: Substitute: \(b^2+11b+18\).
Answer:\(b^2+11b+18\)

iii.  \((c+2)\left(c+\frac{3}{5}\right)\)

Step 1: Use \((c+m)(c+n)=c^2+(m+n)c+mn\).
Step 2: Here \(m=2\) and \(n=\frac{3}{5}\) ⟹ \(m+n=2+\frac{3}{5}=\frac{13}{5}\) and \(mn=2\cdot\frac{3}{5}=\frac{6}{5}\).
Step 3: Substitute: \(c^2+\frac{13}{5}c+\frac{6}{5}\).
Answer:\(c^2+\frac{13}{5}c+\frac{6}{5}\)

iv.  \(\left(t+\frac{4}{3}\right)\left(t+\frac{1}{3}\right)\)

Step 1: Use \((t+m)(t+n)=t^2+(m+n)t+mn\).
Step 2: Here \(m=\frac{4}{3}\) and \(n=\frac{1}{3}\) ⟹ \(m+n=\frac{5}{3}\) and \(mn=\frac{4}{9}\).
Step 3: Substitute: \(t^2+\frac{5}{3}t+\frac{4}{9}\).
Answer:\(t^2+\frac{5}{3}t+\frac{4}{9}\)


Q2: Find the following products:

i.  \((y+8)(y-4)\)

Step 1: Use the identity \((x+a)(x+b)=x^2+(a+b)x+ab\).
Step 2: Here \(a=8\) and \(b=-4\)\;⟹\; \(a+b=8+(-4)=4\) and \(ab=8\times(-4)=-32\).
Step 3: Substitute in the identity: \(y^2+(4)y+(-32)=y^2+4y-32\).
Answer:\(y^2+4y-32\)

ii.  \((z+6)(z-11)\)

Step 1: Use \((x+a)(x+b)=x^2+(a+b)x+ab\).
Step 2: Here \(a=6\) and \(b=-11\)\;⟹\; \(a+b=6+(-11)=-5\) and \(ab=6\times(-11)=-66\).
Step 3: Substitute: \(z^2+(-5)z+(-66)=z^2-5z-66\).
Answer:\(z^2-5z-66\)

iii.  \((c-5)(c+1)\)

Step 1: Use \((x+a)(x+b)=x^2+(a+b)x+ab\).
Step 2: Here \(a=-5\) and \(b=1\)\;⟹\; \(a+b=-5+1=-4\) and \(ab=(-5)\times1=-5\).
Step 3: Substitute: \(c^2+(-4)c+(-5)=c^2-4c-5\).
Answer:\(c^2-4c-5\)

iv.  \((b-13)(b+10)\)

Step 1: Use \((x+a)(x+b)=x^2+(a+b)x+ab\).
Step 2: Here \(a=-13\) and \(b=10\)\;⟹\; \(a+b=-13+10=-3\) and \(ab=(-13)\times10=-130\).
Step 3: Substitute: \(b^2+(-3)b+(-130)=b^2-3b-130\).
Answer:\(b^2-3b-130\)


Q3: Find the following products:

i.  \((x-3)(x-6)\)

Step 1: Use the identity \((x+a)(x+b)=x^2+(a+b)x+ab\).
Step 2: Here \(a=-3\) and \(b=-6\)\;⟹\; \(a+b=-3+(-6)=-9\), \(ab=(-3)\times(-6)=18\).
Step 3: Substitute: \(x^2+(-9)x+18=x^2-9x+18\).
Answer:\(x^2-9x+18\)

ii.  \((z-11)(z-4)\)

Step 1: Apply \((x+a)(x+b)=x^2+(a+b)x+ab\).
Step 2: Here \(a=-11\), \(b=-4\)\;⟹\; \(a+b=-15\), \(ab=(-11)\times(-4)=44\).
Step 3: Substitute: \(z^2+(-15)z+44=z^2-15z+44\).
Answer:\(z^2-15z+44\)

iii.  \((b-6)(b-8)\)

Step 1: Use \((x+a)(x+b)=x^2+(a+b)x+ab\).
Step 2: Here \(a=-6\), \(b=-8\)\;⟹\; \(a+b=-14\), \(ab=(-6)\times(-8)=48\).
Step 3: Substitute: \(b^2+(-14)b+48=b^2-14b+48\).
Answer:\(b^2-14b+48\)

iv.  \(\left(a-\frac{3}{5}\right)\left(a-\frac{1}{3}\right)\)

Step 1: Apply the identity \((x+a)(x+b)=x^2+(a+b)x+ab\).
Step 2: Here \(a=-\frac{3}{5}\), \(b=-\frac{1}{3}\).
\(a+b=-\frac{3}{5}-\frac{1}{3}=\frac{-9-5}{15}=\frac{-14}{15}\).
\(ab=\left(-\frac{3}{5}\right)\left(-\frac{1}{3}\right)=\frac{3}{15}=\frac{1}{5}\).
Step 3: Substitute: \(a^2+\left(\frac{-14}{15}\right)a+\frac{1}{5}\).
Answer:\(a^2-\frac{14}{15}a+\frac{1}{5}\)


Q4: Find the following products:

i.  \(\left(x-\frac{1}{2}\right)\left(x+\frac{3}{2}\right)\)

Step 1: Recall the identity \((x+a)(x+b)=x^2+(a+b)x+ab\).
Step 2: Here \(a=-\frac{1}{2}\), \(b=\frac{3}{2}\).
\(a+b=-\frac{1}{2}+\frac{3}{2}=\frac{2}{2}=1\).
\(ab=\left(-\frac{1}{2}\right)\left(\frac{3}{2}\right)=-\frac{3}{4}\).
Step 3: Substitute in the identity:
\(x^2+(1)x-\frac{3}{4}=x^2+x-\frac{3}{4}\).
Answer:\(x^2+x-\frac{3}{4}\)

ii.  \(\left(p-3\right)\left(p+\frac{1}{2}\right)\)

Step 1: Use \((x+a)(x+b)=x^2+(a+b)x+ab\).
Step 2: Here \(a=-3\), \(b=\frac{1}{2}\).
\(a+b=-3+\frac{1}{2}=\frac{-6+1}{2}=-\frac{5}{2}\).
\(ab=(-3)\times\frac{1}{2}=-\frac{3}{2}\).
Step 3: Substitute in the identity:
\(p^2+(-\frac{5}{2})p-\frac{3}{2}=p^2-\frac{5}{2}p-\frac{3}{2}\).
Answer:\(p^2-\frac{5}{2}p-\frac{3}{2}\)


Q5: Find the following products:

i.  \(\left(4p+3\right)\left(4p+7\right)\)

Step 1: Use identity \((x+a)(x+b)=x^2+(a+b)x+ab\), with \(x=4p\).
Step 2: Here \(a=3\), \(b=7\).
\(a+b=10\), \(ab=21\).
Step 3: Substitute:
\((4p)^2+10(4p)+21=16p^2+40p+21\).
Answer:\(16p^2+40p+21\)

ii.  \(\left(9c+4\right)\left(9c-2\right)\)

Step 1: Take \(x=9c\), apply \((x+a)(x+b)=x^2+(a+b)x+ab\).
Step 2: Here \(a=4\), \(b=-2\).
\(a+b=2\), \(ab=-8\).
Step 3: Substitute:
\((9c)^2+2(9c)-8=81c^2+18c-8\).
Answer:\(81c^2+18c-8\)

iii.  \(\left(3a-8\right)\left(3a+2\right)\)

Step 1: Take \(x=3a\), apply \((x+a)(x+b)=x^2+(a+b)x+ab\).
Step 2: Here \(a=-8\), \(b=2\).
\(a+b=-6\), \(ab=-16\).
Step 3: Substitute:
\((3a)^2+(-6)(3a)-16=9a^2-18a-16\).
Answer:\(9a^2-18a-16\)

iv.  \(\left(5x-2\right)\left(5x-7\right)\)

Step 1: Take \(x=5x\), apply \((x+a)(x+b)=x^2+(a+b)x+ab\).
Step 2: Here \(a=-2\), \(b=-7\).
\(a+b=-9\), \(ab=14\).
Step 3: Substitute:
\((5x)^2+(-9)(5x)+14=25x^2-45x+14\).
Answer:\(25x^2-45x+14\)


Q6: Find the following products:

i.  \(\left(x^2+3\right)\left(x^2+6\right)\)

Step 1: Expand using distributive property: \((a+b)(c+d)=ac+ad+bc+bd\).
Step 2: Multiply term by term:
\((x^2)(x^2)+(x^2)(6)+(3)(x^2)+(3)(6)\).
Step 3: Simplify:
\(x^4+6x^2+3x^2+18 = x^4 + 9x^2 + 18\).
Answer:\(x^4 + 9x^2 + 18\)

ii.  \(\left(y^2-1\right)\left(y^2+4\right)\)

Step 1: Expand using distributive law.
\((y^2)(y^2)+(y^2)(4)+(-1)(y^2)+(-1)(4)\).
Step 2: Simplify:
\(y^4+4y^2-y^2-4\).
\(=y^4+3y^2-4\).
Answer:\(y^4+3y^2-4\)

iii.  \(\left(z^2+3\right)\left(z^2-7\right)\)

Step 1: Expand terms:
\((z^2)(z^2)+(z^2)(-7)+(3)(z^2)+(3)(-7)\).
Step 2: Simplify:
\(z^4-7z^2+3z^2-21\).
\(=z^4-4z^2-21\).
Answer:\(z^4-4z^2-21\)

iv.  \(\left(t^2-2\right)\left(t^2-5\right)\)

Step 1: Expand terms:
\((t^2)(t^2)+(t^2)(-5)+(-2)(t^2)+(-2)(-5)\).
Step 2: Simplify:
\(t^4-5t^2-2t^2+10\).
\(=t^4-7t^2+10\).
Answer:\(t^4-7t^2+10\)


Q7: Find the following products:

i. \((ab – 2)(ab + 4)\)

Step 1: Recognize the form \[ (x + p)(x + q) = x^2 + (p+q)x + pq \] Here, \(x = ab\), \(p = -2\), \(q = 4\).
Step 2: Apply identity \[ (ab – 2)(ab + 4) = (ab)^2 + (4 – 2)(ab) + (-2)(4) \]Step 3: Simplify \[ = a^2b^2 + 2ab – 8 \]Answer: \((ab – 2)(ab + 4) = a^2b^2 + 2ab – 8\)

ii. \((2 + xy)(3 – xy)\)

Step 1: Recognize the form \[ (p + q)(r – q) = pr + (r – p)q – q^2 \] Here, \(p = 2\), \(r = 3\), \(q = xy\).
Step 2: Expand using distributive law \[ (2 + xy)(3 – xy) = (2)(3) + (2)(-xy) + (xy)(3) + (xy)(-xy) \]Step 3: Simplify \[ = 6 – 2xy + 3xy – (xy)^2 \\ = 6 + xy – x^2y^2 \]Answer: \((2 + xy)(3 – xy) = 6 + xy – x^2y^2\)


Q8: Find the following products:

i.  \((3x+4y)(4x+3y)\)

Step 1: Recall identity: \((a+b)(c+d) = ac + ad + bc + bd\).
Step 2: Multiply term by term:
\((3x)(4x) + (3x)(3y) + (4y)(4x) + (4y)(3y)\).
Step 3: Simplify:
\(12x^2 + 9xy + 16xy + 12y^2\).
\(= 12x^2 + 25xy + 12y^2\).
Answer: \(12x^2 + 25xy + 12y^2\)

ii.  \((4a-5b)(3a+2b)\)

Step 1: Expand using distributive property.
\((4a)(3a) + (4a)(2b) + (-5b)(3a) + (-5b)(2b)\).
Step 2: Simplify:
\(12a^2 + 8ab – 15ab – 10b^2\).
\(= 12a^2 – 7ab – 10b^2\).
Answer: \(12a^2 – 7ab – 10b^2\)

iii.  \((2y+z)(7z-3y)\)

Step 1: Expand terms:
\((2y)(7z) + (2y)(-3y) + (z)(7z) + (z)(-3y)\).
Step 2: Simplify:
\(14yz – 6y^2 + 7z^2 – 3yz\).
\(= -6y^2 + 11yz + 7z^2\).
Answer: \(-6y^2 + 11yz + 7z^2\)

iv.  \((2m-4n)(4m-3n)\)

Step 1: Expand terms:
\((2m)(4m) + (2m)(-3n) + (-4n)(4m) + (-4n)(-3n)\).
Step 2: Simplify:
\(8m^2 – 6mn – 16mn + 12n^2\).
\(= 8m^2 – 22mn + 12n^2\).
Answer: \(8m^2 – 22mn + 12n^2\)


Q9: Find the following products:

i.  \((2pq + 0.1mn)(0.2pq + 3mn)\)

Step 1: Expand using distributive law:
\((2pq)(0.2pq) + (2pq)(3mn) + (0.1mn)(0.2pq) + (0.1mn)(3mn)\)
Step 2: Simplify terms:
\((2pq)(0.2pq) = 0.4p^2q^2\)
\((2pq)(3mn) = 6pqmn\)
\((0.1mn)(0.2pq) = 0.02pqmn\)
\((0.1mn)(3mn) = 0.3m^2n^2\)
Step 3: Combine like terms:
\(0.4p^2q^2 + (6 + 0.02)pqmn + 0.3m^2n^2\)
\(= 0.4p^2q^2 + 6.02pqmn + 0.3m^2n^2\)
Answer: \(0.4p^2q^2 + 6.02pqmn + 0.3m^2n^2\)

ii.  \(\left(\frac{4m}{p} – \frac{0.2n}{q}\right)\left(\frac{3m}{p} + \frac{0.5n}{q}\right)\)

Step 1: Expand terms:
\(\frac{4m}{p}\cdot \frac{3m}{p} + \frac{4m}{p}\cdot \frac{0.5n}{q} – \frac{0.2n}{q}\cdot \frac{3m}{p} – \frac{0.2n}{q}\cdot \frac{0.5n}{q}\)
Step 2: Simplify each term:
\(\frac{4m}{p}\cdot \frac{3m}{p} = \frac{12m^2}{p^2}\)
\(\frac{4m}{p}\cdot \frac{0.5n}{q} = \frac{2mn}{pq}\)
\(-\frac{0.2n}{q}\cdot \frac{3m}{p} = -\frac{0.6mn}{pq}\)
\(-\frac{0.2n}{q}\cdot \frac{0.5n}{q} = -\frac{0.1n^2}{q^2}\)
Step 3: Combine terms:
\(\frac{12m^2}{p^2} + \left(\frac{2 – 0.6}{pq}\right)mn – \frac{0.1n^2}{q^2}\)
\(= \frac{12m^2}{p^2} + \frac{1.4mn}{pq} – \frac{0.1n^2}{q^2}\)
Answer: \(\frac{12m^2}{p^2} + \frac{1.4mn}{pq} – \frac{0.1n^2}{q^2}\)

iii.  \(\left(\frac{3}{4}x – 2pq\right)\left(3x – \frac{4}{5}pq\right)\)

Step 1: Expand terms:
\(\frac{3}{4}x \cdot 3x + \frac{3}{4}x \cdot \left(-\frac{4}{5}pq\right) + (-2pq)(3x) + (-2pq)\left(-\frac{4}{5}pq\right)\)
Step 2: Simplify each term:
\(\frac{3}{4}x \cdot 3x = \frac{9}{4}x^2\)
\(\frac{3}{4}x \cdot \left(-\frac{4}{5}pq\right) = -\frac{3}{5}xpq\)
\((-2pq)(3x) = -6xpq\)
\((-2pq)(-\frac{4}{5}pq) = \frac{8}{5}p^2q^2\)
Step 3: Combine like terms:
\(\frac{9}{4}x^2 + \left(-\frac{3}{5} – 6\right)xpq + \frac{8}{5}p^2q^2\)
\(\;= \frac{9}{4}x^2 – \frac{33}{5}xpq + \frac{8}{5}p^2q^2\)
Answer: \(\frac{9}{4}x^2 – \frac{33}{5}xpq + \frac{8}{5}p^2q^2\)


Q10: Find the following products:

i.  \((2a^2+3b^2)(3a^2+2b^2)\)

Step 1: Expand using distributive law:
\((2a^2)(3a^2) + (2a^2)(2b^2) + (3b^2)(3a^2) + (3b^2)(2b^2)\)
Step 2: Simplify each term:
\((2a^2)(3a^2) = 6a^4\)
\((2a^2)(2b^2) = 4a^2b^2\)
\((3b^2)(3a^2) = 9a^2b^2\)
\((3b^2)(2b^2) = 6b^4\)
Step 3: Combine like terms:
\(6a^4 + (4 + 9)a^2b^2 + 6b^4\)
\(= 6a^4 + 13a^2b^2 + 6b^4\)
Answer: \(6a^4 + 13a^2b^2 + 6b^4\)

ii.  \((x^2+5y^2)(y^2-2x^2)\)

Step 1: Expand terms:
\((x^2)(y^2) + (x^2)(-2x^2) + (5y^2)(y^2) + (5y^2)(-2x^2)\)
Step 2: Simplify each term:
\((x^2)(y^2) = x^2y^2\)
\((x^2)(-2x^2) = -2x^4\)
\((5y^2)(y^2) = 5y^4\)
\((5y^2)(-2x^2) = -10x^2y^2\)
Step 3: Combine like terms:
\(-2x^4 + (1 – 10)x^2y^2 + 5y^4\)
\(= -2x^4 – 9x^2y^2 + 5y^4\)
Answer: \(-2x^4 – 9x^2y^2 + 5y^4\)

iii.  \((3c^2-4d^2)(4c^2-3d^2)\)

Step 1: Expand terms:
\((3c^2)(4c^2) + (3c^2)(-3d^2) + (-4d^2)(4c^2) + (-4d^2)(-3d^2)\)
Step 2: Simplify each term:
\((3c^2)(4c^2) = 12c^4\)
\((3c^2)(-3d^2) = -9c^2d^2\)
\((-4d^2)(4c^2) = -16c^2d^2\)
\((-4d^2)(-3d^2) = 12d^4\)
Step 3: Combine like terms:
\(12c^4 + (-9 -16)c^2d^2 + 12d^4\)
\(= 12c^4 – 25c^2d^2 + 12d^4\)
Answer: \(12c^4 – 25c^2d^2 + 12d^4\)


previous
next

Share the Post:

Leave a Comment

Your email address will not be published. Required fields are marked *

Related Posts​

  • Linear Inequations
    Step by Step solutions of Exercise- Competency Focused Questions of RS Aggarwal ICSE Class-8 Maths chapter 16- Linear Inequations by Goyal Brothers Prakashan is provided.
  • Linear Inequations
    Step by Step solutions of Exercise- Assertion-Reason Questions of RS Aggarwal ICSE Class-8 Maths chapter 16- Linear Inequations by Goyal Brothers Prakashan is provided.

Join Our Newsletter

Name
Email
The form has been submitted successfully!
There has been some error while submitting the form. Please verify all form fields again.

Scroll to Top