Algebraic Expressions

algebraic expressions class 8 selina

Step by Step solutions of Concise Mathematics ICSE Class-8 Maths chapter 11- Algebraic Expressions by Selina is provided.

Table of Contents

Exercise: 11-C

Q1: Multiple Choice Type

i. The value of \(x – \overline{x – y}\) is:

Step 1: Solve the inner bracket:
\(\overline{x – y} = x – y\)
Step 2: Subtract:
\(x – (x – y) = x – x + y = y\)
Answer: c. \(y\)

ii. \((5x – 4y) – (5y – 4x)\) is equal to:

Step 1: Remove brackets:
\(5x – 4y – 5y + 4x\)
Step 2: Combine like terms:
\((5x + 4x) + (-4y – 5y) = 9x – 9y = 9(x – y)\)
Answer: a. \(9(x – y)\)

iii. \(x(y – x – \overline{x – y})\) is equal to:

Step 1: Solve the bar first:
\(\overline{x – y} = x – y\)
Step 2: Substitute in the expression:
\(x(y – x – (x – y)) = x(y – x – x + y)\)
Step 3: Simplify:
\(x(2y – 2x) = 2x(y – x)\)
Answer: b. \(2x(y – x)\)

iv. \((2x – y) + \overline{2x – y}\) is equal to:

Step 1: Evaluate the bar:
\(\overline{2x – y} = 2x – y\)
Step 2: Add:
\((2x – y) + (2x – y) = 4x – 2y\)
Answer: d. \(4x – 2y\)

v. \(x(y – z) + y(z – x) – z(y – x)\) is equal to:

Step 1: Expand each term:
\(x(y – z) = xy – xz\)
\(y(z – x) = yz – xy\)
\(-z(y – x) = -zy + zx\)
Step 2: Combine all terms:
\((xy – xz) + (yz – xy) + (-zy + zx)\)
Step 3: Cancel terms:
+xy and -xy cancel
-zy and +yz cancel
-xz and +zx cancel
Everything cancels out → 0
Answer: a. 0


Q2: Simplify \(a^2 – 2a + \left\{5a^2 – \left(3a – 4a^2\right)\right\}\)

Given Expression: \[ a^2 – 2a + \left\{5a^2 – \left(3a – 4a^2\right)\right\} \]Step 1: Simplify the inner bracket: \[ 3a – 4a^2 \]Step 2: Substitute and simplify inside the curly braces: \[ 5a^2 – (3a – 4a^2) = 5a^2 – 3a + 4a^2 = (5a^2 + 4a^2) – 3a = 9a^2 – 3a \]Step 3: Now the expression becomes: \[ a^2 – 2a + 9a^2 – 3a \]Step 4: Combine like terms: \[ (a^2 + 9a^2) + (-2a – 3a) = 10a^2 – 5a \]Answer: \(10a^2 – 5a\)


Q3: Simplify \(x – y – \left\{ x – y – (x + y) – \overline{x – y} \right\}\)

Given Expression: \[ x – y – \left\{ x – y – (x + y) – \overline{x – y} \right\} \]Step 1: Simplify the expression inside the curly braces: \[ x – y – (x + y) – \overline{x – y} \]Step 2: First simplify \(\overline{x – y}\) (negation of \(x – y\)): \[ \overline{x – y} = (x – y) \]Step 3: Substitute and simplify inside the braces: \[ x – y – (x + y) – (x – y) = x – y – x – y – x + y \]Break it down: \[ (x – x – x) + (-y – y + y) = -x + (-y) \]Simplify: \[ -x – y \]Step 4: Now the entire expression becomes: \[ x – y – (-x – y) \]Step 5: Simplify: \[ x – y + x + y = (x + x) + (-y + y) = 2x + 0 = 2x \]Answer: \(2x\)


Q4: Simplify \(-3(1 – x^2) – 2 \left\{ x^2 – (3 – 2x^2) \right\}\)

Given Expression: \[ -3(1 – x^2) – 2 \left\{ x^2 – (3 – 2x^2) \right\} \]Step 1: Simplify the inner bracket: \[ 3 – 2x^2 \]Step 2: Substitute and simplify inside the curly braces: \[ x^2 – (3 – 2x^2) = x^2 – 3 + 2x^2 = (x^2 + 2x^2) – 3 = 3x^2 – 3 \]Step 3: Now the expression becomes: \[ -3(1 – x^2) – 2(3x^2 – 3) \]Step 4: Expand both terms: \[ -3 \times 1 + (-3) \times (-x^2) – 2 \times 3x^2 + (-2) \times (-3) \]Calculate: \[ -3 + 3x^2 – 6x^2 + 6 \]Step 5: Combine like terms: \[ (-3 + 6) + (3x^2 – 6x^2) = 3 – 3x^2 \]Answer: \(3 – 3x^2\)


Q5: Simplify \(2\left\{ m – 3\left( n + \overline{m – 2n} \right) \right\}\)

Given Expression: \[ 2 \left\{ m – 3 \left( n + \overline{m – 2n} \right) \right\} \]Step 1: Simplify the negation \(\overline{m – 2n}\): \[ \overline{m – 2n} = m – 2n \]Step 2: Simplify inside the parenthesis: \[ n + (m – 2n) = n + m – 2n = m – n \]Step 3: Multiply by \(-3\): \[ -3 \times (m – n) = -3m + 3n \]Step 4: Now simplify inside the braces: \[ m + (-3m + 3n) = -2m + 3n \]Step 5: Multiply entire expression by 2: \[ 2 \times (-2m + 3n) = -4m + 6n \]Answer: \(-4m + 6n\)


Q6: Simplify \(3x – \left[ 3x – \left\{ 3x – \left( 3x – \overline{3x – y} \right) \right\} \right]\)

Given Expression: \[ 3x – \left[ 3x – \left\{ 3x – \left( 3x – \overline{3x – y} \right) \right\} \right] \]Step 1: Simplify the negation \(\overline{3x – y}\): \[ \overline{3x – y} = 3x – y \]Step 2: Simplify inside the innermost parentheses: \[ 3x – \overline{3x – y} = 3x – (3x – y) = 3x – 3x + y = y \]Step 3: Simplify inside the curly braces: \[ 3x – (y) = 3x – y = 3x – y \]Step 4: Simplify inside the square brackets: \[ 3x – (3x – y) = 3x – 3x + y = y \]Step 5: Finally simplify the entire expression: \[ 3x – (y) = 3x – y = 3x – y \]Answer: \(3x – y\)


Q7: Simplify \(p^2x – 2 \left\{ px – 3x \left( x^2 – \overline{3a – x^2} \right) \right\}\)

Given Expression: \[ p^2x – 2 \left\{ px – 3x \left( x^2 – \overline{3a – x^2} \right) \right\} \]Step 1: Simplify the negation \(\overline{3a – x^2}\): \[ \overline{3a – x^2} = 3a – x^2 \]Step 2: Simplify inside the parenthesis: \[ x^2 – \overline{3a – x^2} = x^2 – (3a – x^2) = x^2 – 3a + x^2 = -3a + 2x^2 \]Step 3: Multiply inside the braces: \[ 3x \times (-3a + 2x^2) = -9ax + 6x^3 \]Step 4: Simplify inside the braces: \[ px – (-9ax + 6x^2) = px + 9ax + 6x^3 \]Step 5: Multiply entire braces by \(2\): \[ 2 \times (px + 9ax + 6x^3p) = 2px + 18ax + 12x^3 \]Step 6: Final expression: \[ p^2x – (2px + 18ax + 12x^3p) = p^2x – 2px – 18ax – 12x^3 \]Answer: \(p^2x – 2px – 18ax – 12x^3\)


Q8: Simplify \(2 \left[ 6 + 4 \left\{ m – 6 \left( 7 – \overline{n + p} \right) + q \right\} \right]\)

Given Expression: \[ 2 \left[ 6 + 4 \left\{ m – 6 \left( 7 – \overline{n + p} \right) + q \right\} \right] \]Step 1: Simplify the negation \(\overline{n + p}\): \[ \overline{n + p} = n + p \]Step 2: Simplify inside the parentheses: \[ 7 – \overline{n + p} = 7 – (n + p) = 7 – n – p \]Step 3: Multiply by 6: \[ 6 \times (7 – n – p) = 42 – 6n – 6p \]Step 4: Simplify inside the braces: \[ m – (42 – 6n – 6p) + q = m – 42 + 6n + 6p + q \]Step 5: Multiply by 4: \[ 4 \times (m – 42 + 6n + 6p + q) = 4m – 168 + 24n + 24p + 4q \]Step 6: Add 6: \[ 6 + (4m – 168 + 24n + 24p + 4q) = 4m – 162 + 24n + 24p + 4q \]Step 7: Multiply entire expression by 2: \[ 2 \times (4m – 162 + 24n + 24p + 4q) = 8m – 324 + 48n + 48p + 8q \]Answer: \(8m – 324 + 48n + 48p + 8q\)


Q9: Simplify \(a – \left[ a – \overline{b + a} – \left\{ a – \left( a – \overline{b – a} \right) \right\} \right]\)

Given Expression: \[ a – \left[ a – \overline{b + a} – \left\{ a – \left( a – \overline{b – a} \right) \right\} \right] \]Step 1: Simplify the negations: \[ \overline{b + a} = b + a \\ \overline{b – a} = b – a \]Step 2: Simplify the innermost bracket: \[ a – \overline{b – a} = a – (b – a) = a – b + a = 2a – b \]Step 3: Simplify the next bracket: \[ a – \left( a – \overline{b – a} \right) = a – (2a – b) = a – 2a + b = -a + b \]Step 4: Substitute back: \[ a – \left[ a – (b + a) – (-a – b) \right] = a – \left[ a – b – a – (-a + b) \right] \]Step 5: Simplify inside the square brackets: \[ a – b – a – (-a + b) = a – b – a + a – b = a – b – b = a – 2b \]Step 6: Now simplify the entire expression: \[ a – (a – 2b) = a – a + 2b = 2b \]Answer: \(2b\)


Q10: Simplify \(3x – \left[4x – \overline{3x – 5y} – 3 \left\{ 2x – \left(3x – \overline{2x – 3y}\right) \right\} \right]\)

Given Expression: \[ 3x – \left[ 4x – \overline{3x – 5y} – 3 \left\{ 2x – \left( 3x – \overline{2x – 3y} \right) \right\} \right] \]Step 1: Simplify the negations: \[ \overline{3x – 5y} = 3x – 5y \\ \overline{2x – 3y} = 2x – 3y \]Step 2: Simplify inside the innermost parentheses: \[ 3x – \overline{2x – 3y} = 3x – (2x – 3y) = 3x – 2x + 3y = x + 3y \]Step 3: Simplify inside the curly braces: \[ 2x – (x + 3y) = 2x – x – 3y = x – 3y \]Step 4: Multiply by 3: \[ 3 \times (x – 3y) = 3x – 9y \]Step 5: Simplify inside the square brackets: \[ 4x – (3x – 5y) – (3x – 9y) = 4x – 3x + 5y – 3x + 9y = (4x – 3x – 3x) + (5y + 9y) = -2x + 14y \]Step 6: Now simplify the whole expression: \[ 3x – (-2x + 14y) = 3x + 2x – 14y = 5x – 14y \]Answer: \(5x – 14y\)


Q11: Simplify \(a^5 \div a^3 + 3a \times 2a\)

Given Expression: \[ a^5 \div a^3 + 3a \times 2a \]Step 1: Simplify division of powers with same base \(a\): \[ a^5 \div a^3 = a^{5-3} = a^2 \]Step 2: Simplify multiplication: \[ 3a \times 2a = 3 \times 2 \times a \times a = 6a^2 \]Step 3: Add the two results: \[ a^2 + 6a^2 = 7a^2 \]Answer: \(7a^2\)


Q12: Simplify \(x^5 \div \left(x^2 \times y^2\right) \times y^3\)

Given Expression: \[ x^5 \div \left(x^2 y^2\right) \times y^3 \]Step 1: Simplify the division of powers with same base \(x\): \[ x^5 \div x^2 = x^{5-2} = x^3 \]Step 2: Rewrite the expression: \[ \left(x^3 \div y^2\right) \times y^3 = x^3 \times \left(\frac{y^3}{y^2}\right) \]Step 3: Simplify the powers of \(y\): \[ \frac{y^3}{y^2} = y^{3-2} = y^1 = y \]Step 4: Multiply: \[ x^3 \times y = x^3 y \]Answer: \(x^3 y\)


Q13: Simplify \(\left(x^5 \div x^2\right) \times y^2 \times y^3\)

Given Expression: \[ \left(x^5 \div x^2\right) \times y^2 \times y^3 \]Step 1: Simplify division of powers with same base \(x\): \[ x^5 \div x^2 = x^{5-2} = x^3 \]Step 2: Multiply powers of \(y\): \[ y^2 \times y^3 = y^{2+3} = y^5 \]Step 3: Multiply the results: \[ x^3 \times y^5 = x^3 y^5 \]Answer: \(x^3 y^5\)


Q14: Simplify \(\left(y^3 – 5y^2\right) \div y \times \left(y – 1\right)\)

Given Expression: \[ \left(y^3 – 5y^2\right) \div y \times \left(y – 1\right) \]Step 1: Divide each term in the numerator by \(y\): \[ \frac{y^3}{y} – \frac{5y^2}{y} = y^{3-1} – 5 y^{2-1} = y^2 – 5y \]Step 2: Multiply the result by \((y – 1)\): \[ (y^2 – 5y)(y – 1) \]Step 3: Use distributive property: \[ y^2 \times y – y^2 \times 1 – 5y \times y + 5y \times 1 = y^3 – y^2 – 5y^2 + 5y \]Step 4: Combine like terms: \[ y^3 – (y^2 + 5y^2) + 5y = y^3 – 6y^2 + 5y \]Answer: \(y^3 – 6y^2 + 5y\)


previous
next

Share the Post:

Leave a Comment

Your email address will not be published. Required fields are marked *

Related Posts​

  • Identities
    Step by Step solutions of Test Yourself Concise Mathematics ICSE Class-8 Maths chapter 12- Identities by Selina is provided.
  • Identities
    Step by Step solutions of Exercise- 12B Concise Mathematics ICSE Class-8 Maths chapter 12- Identities by Selina is provided.

Join Our Newsletter

Name
Email
The form has been submitted successfully!
There has been some error while submitting the form. Please verify all form fields again.

Scroll to Top