Algebraic Expressions

algebraic expressions class 8 selina

Step by Step solutions of Concise Mathematics ICSE Class-8 Maths chapter 11- Algebraic Expressions by Selina is provided.

Table of Contents

Exercise: 11-B

Q1: Multiple Choice Type

i. \((9x^4 – 8x^3 – 12) \times (3x)\) is equal to:

Step 1: Distribute \(3x\) to each term inside the bracket.
\((9x^4 \times 3x) + (-8x^3 \times 3x) + (-12 \times 3x)\)
Step 2: Multiply each term.
\(27x^5 – 24x^4 – 36x\)
Answer: b. \(27x^5 – 24x^4 – 36x\)

ii. \(\left(9x^4 – 12x^3 – 18x\right) \div (3x)\) is equal to:

Step 1: Divide each term by \(3x\)
\(\frac{9x^4}{3x} – \frac{12x^3}{3x} – \frac{18x}{3x}\)
Step 2: Simplify the terms:
\(3x^3 – 4x^2 – 6\)
Answer: c. \(3x^3 – 4x^2 – 6\)

iii. \(\left(\frac{10}{3}xy^2z\right) \times \left(-\frac{9}{5}x^2z\right)\) is equal to:

Step 1: Multiply the coefficients:
\(\frac{10}{3} \times -\frac{9}{5} = -6\)
Step 2: Multiply the variables:
\(x \times x^2 = x^3,\quad y^2,\quad z \times z = z^2\)
Step 3: Final expression:
\(-6x^3y^2z^2\)
Answer: a. \(-6x^3y^2z^2\)

iv. \((x^3 + y^2) \times 10x^2\) is equal to:

Step 1: Distribute \(10x^2\):
\((x^3 \times 10x^2) + (y^2 \times 10x^2)\)
Step 2: Multiply each term:
\(10x^5 + 10x^2y^2\)
Answer: b. \(10x^5 + 10x^2y^2\)

v. \((a^3 – b^3) \div (a – b)\) is equal to:

Step 1: Use the identity:
\(a^3 – b^3 = (a – b)(a^2 + ab + b^2)\)
Step 2: Cancel the common factor \((a – b)\):
\(\frac{(a – b)(a^2 + ab + b^2)}{(a – b)} = a^2 + ab + b^2\)
Answer: a. \(a^2 + ab + b^2\)


Q2: Multiply:

i. \(8ab^2\) by \(-4a^3b^4\)

Step 1: Multiply the coefficients: 8 × (-4) = -32
Step 2: Multiply variables: \(a × a^3 = a^4\), \(b^2 × b^4 = b^6\)
Answer: \(-32a^4b^6\)

ii. \(\frac{2}{3}ab\) by \(-\frac{1}{4}a^2b\)

Step 1: Multiply coefficients: \(\frac{2}{3} × -\frac{1}{4} = -\frac{2}{12} = -\frac{1}{6}\)
Step 2: Multiply variables: \(a × a^2 = a^3\), \(b × b = b^2\)
Answer: \(-\frac{1}{6}a^3b^2\)

iii. \(-5cd^2\) by \(-5cd^2\)

Step 1: Multiply coefficients: \(-5 × -5 = 25\)
Step 2: \(c × c = c^2\), \(d^2 × d^2 = d^4\)
Answer: \(25c^2d^4\)

iv. \(4a\) by \(6a+7\)

Step 1: Distribute: \(4a × 6a = 24a^2\), \(4a × 7 = 28a\)
Answer: \(24a^2 + 28a\)

v. \(-8x\) by \(4 – 2x – x^2\)

Step 1: Distribute:
\(-8x × 4 = -32x\)
\(-8x × -2x = +16x^2\)
\(-8x × -x^2 = +8x^3\)
Answer: \(8x^3 + 16x^2 – 32x\)

vi. \(2a^2 – 5a – 4\) by \(-3a\)

Step 1: Distribute:
\(-3a × 2a^2 = -6a^3\)
\(-3a × -5a = +15a^2\)
\(-3a × -4 = +12a\)
Answer: \(-6a^3 + 15a^2 + 12a\)

vii. \(x+4\) by \(x-5\)

Step 1: Apply distributive property:
\(x × x = x^2\)
\(x × -5 = -5x\)
\(4 × x = 4x\)
\(4 × -5 = -20\)
Step 2: Combine like terms: \(-5x + 4x = -x\)
Answer: \(x^2 – x – 20\)

viii. \(5a-1\) by \(7a-3\)

Step 1: Multiply using distributive law:
\(5a × 7a = 35a^2\)
\(5a × -3 = -15a\)
\(-1 × 7a = -7a\)
\(-1 × -3 = +3\)
Step 2: Combine like terms: \(-15a – 7a = -22a\)
Answer: \(35a^2 – 22a + 3\)

ix. \(12a + 5b\) by \(7a – b\)

Step 1: Use distributive property:
  \((12a + 5b)(7a – b) = 12a \cdot 7a + 12a \cdot (-b) + 5b \cdot 7a + 5b \cdot (-b)\)
Step 2: Multiply each term:
  \(84a^2 – 12ab + 35ab – 5b^2\)
Step 3: Combine like terms:
  \(84a^2 + 23ab – 5b^2\)
Answer: \(84a^2 + 23ab – 5b^2\)

x. \(x^2 + x + 1\) by \(1 – x\)

Step 1: Apply distributive property:
  \((x^2 + x + 1)(1 – x) = x^2 \cdot 1 + x \cdot 1 + 1 \cdot 1 – x^2 \cdot x – x \cdot x – 1 \cdot x\)
Step 2: Multiply:
  \(x^2 + x + 1 – x^3 – x^2 – x\)
Step 3: Combine like terms:
  \(-x^3 + 1\)
Answer: \(-x^3 + 1\)

xi. \(2m^2 – 3m – 1\) and \(4m^2 – m – 1\)

Step 1: Use distributive property: Multiply each term in the first bracket with every term in the second:
  \((2m^2)(4m^2 – m – 1) = 8m^4 – 2m^3 – 2m^2\)
  \((-3m)(4m^2 – m – 1) = -12m^3 + 3m^2 + 3m\)
  \((-1)(4m^2 – m – 1) = -4m^2 + m + 1\)
Step 2: Add all terms:
  \(8m^4 – 2m^3 – 2m^2 – 12m^3 + 3m^2 + 3m – 4m^2 + m + 1\)
Step 3: Combine like terms:
  \(8m^4 – 14m^3 – 3m^2 + 4m + 1\)
Answer: \(8m^4 – 14m^3 – 3m^2 + 4m + 1\)

xii. \(a^2\), \(ab\) and \(b^2\)

Step 1: Multiply all terms:
  \(a^2 \cdot ab \cdot b^2 = a^3b^3\)
Answer: \(a^3b^3\)

xiii. \(abx\), \(-3a^2x\), and \(7b^2x^3\)

Step 1: Multiply all terms:
  \(abx \cdot (-3a^2x) \cdot 7b^2x^3\)
Step 2: Group and simplify:
  \(-3 \cdot 7 \cdot a \cdot a^2 \cdot b \cdot b^2 \cdot x \cdot x \cdot x^3 = -21a^3b^3x^5\)
Answer: \(-21a^3b^3x^5\)

xiv. \(-3bx\), \(-5xy\), and \(-7b^3y^2\)

Step 1: Multiply all constants: \((-3)(-5)(-7) = -105\)
Step 2: Multiply variables:
  \(b \cdot x \cdot x \cdot y \cdot b^3 \cdot y^2 = b^4x^2y^3\)
Answer: \(-105b^4x^2y^3\)

xv. \(-\frac{3}{2}x^5y^3\) and \(\frac{4}{9}a^2x^3y\)

Step 1: Multiply coefficients:
  \(-\frac{3}{2} \cdot \frac{4}{9} = -\frac{12}{18} = -\frac{2}{3}\)
Step 2: Multiply variables:
  \(x^5 \cdot x^3 = x^8,\quad y^3 \cdot y = y^4\)
Answer: \(-\frac{2}{3}a^2x^8y^4\)

xvi. \(-\frac{2}{3}a^7b^2\) and \(-\frac{9}{4}ab^5\)

Step 1: Multiply coefficients:
  \(-\frac{2}{3} \cdot -\frac{9}{4} = \frac{18}{12} = \frac{3}{2}\)
Step 2: Multiply variables:
  \(a^7 \cdot a = a^8,\quad b^2 \cdot b^5 = b^7\)
Answer: \(\frac{3}{2}a^8b^7\)

xvii. \(2a^3 – 3a^2b\) and \(-\frac{1}{2}ab^2\)

Step 1: Distribute:
  \(2a^3 \cdot -\frac{1}{2}ab^2 = -a^4b^2\)
  \(-3a^2b \cdot -\frac{1}{2}ab^2 = \frac{3}{2}a^3b^3\)
Answer: \(-a^4b^2 + \frac{3}{2}a^3b^3\)

xviii. \(2x + \frac{1}{2}y\) and \(2x – \frac{1}{2}y\)

Step 1: Recognize identity: \((a + b)(a – b) = a^2 – b^2\)
  Here, \(a = 2x,\quad b = \frac{1}{2}y\)
Step 2: Apply identity:
  \((2x)^2 – \left(\frac{1}{2}y\right)^2 = 4x^2 – \frac{1}{4}y^2\)
Answer: \(4x^2 – \frac{1}{4}y^2\)


Q3: Multiply

i. \(5x^2 – 8xy + 6y^2 – 3\) by \(-3xy\)

Step 1: Distribute \(-3xy\) to each term inside the bracket
= \(-3xy \times 5x^2\) + \(-3xy \times (-8xy)\) + \(-3xy \times 6y^2\) + \(-3xy \times (-3)\)
Step 2: Multiply each term
= \(-15x^3y + 24x^2 y^2 + (-18x y^3) + 9xy\)
Answer: -15x³y + 24x²y² – 18xy³ + 9xy

ii. \(3 – \frac{2}{3}xy + \frac{5}{7}xy^2 – \frac{16}{21}x^2y\) by \(-21x^2y^2\)

Step 1: Multiply each term
= \(-21x^2y^2 \times 3\) + \(-21x^2y^2 \times (-\frac{2}{3}xy)\) + \(-21x^2y^2 \times \frac{5}{7}xy^2\) + \(-21x^2y^2 \times (-\frac{16}{21}x^2y)\)
Step 2: Solve step-by-step
= \(-63x^2y^2 + 14x^3y^3 – 15x^3y^4 + 16x^4y^3\)
Answer: -63x²y² + 14x³y³ – 15x³y⁴ + 16x⁴y³

iii. \(6x^3 – 5x + 10\) by \(4 – 3x^2\)

Step 1: Distribute both terms
= \(6x^3 \times 4 + 6x^3 \times (-3x^2)\) + \((-5x \times 4 + (-5x \times -3x^2))\) + \(10 \times 4 + 10 \times (-3x^2)\)
Step 2: Multiply
= \(24x^3 – 18x^5 – 20x + 15x^3 + 40 – 30x^2\)
Step 3: Arrange in standard form
= \(-18x^5 + 39x^3 – 30x^2 – 20x + 40\)
Answer: -18x⁵ + 39x³ – 30x² – 20x + 40

iv. \(2y – 4y^3 + 6y^5\) by \(y^2 + y – 3\)

Step 1: Use distributive property:
Each term of first polynomial multiplied by entire second polynomial.
Step 2: Multiply
2y × (y² + y – 3) = 2y³ + 2y² – 6y
-4y³ × (y² + y – 3) = -4y⁵ – 4y⁴ + 12y³
6y⁵ × (y² + y – 3) = 6y⁷ + 6y⁶ – 18y⁵
Step 3: Combine like terms
= 6y⁷ + 6y⁶ – 22y⁵ – 4y⁴ + 14y³ + 2y² – 6y
Answer: 6y⁷ + 6y⁶ – 22y⁵ – 4y⁴ + 14y³ + 2y² – 6y

v. \(5p^2 + 25pq + 4q^2\) by \(2p^2 – 2pq + 3q^2\)

Step 1: Use distributive property (FOIL-like)
First: 5p² × \(2p^2 – 2pq + 3q^2\) = 10p⁴ – 10p³q + 15p²q²
Next: 25pq × \(2p^2 – 2pq + 3q^2\) = 50p³q – 50p²q² + 75pq³
Next: 4q² × \(2p^2 – 2pq + 3q^2\) = 8p²q² – 8pq³ + 12q⁴
Step 2: Combine like terms
= 10p⁴ + 40p³q – 27p²q² + 67pq³ + 12q⁴
Answer: 10p⁴ + 40p³q – 27p²q² + 67pq³ + 12q⁴


Q4: Simplify:

i. \((7x – 8)(3x + 2)\)

Step 1: Apply distributive property (FOIL method):
= \(7x \cdot 3x + 7x \cdot 2 – 8 \cdot 3x – 8 \cdot 2\)
= \(21x^2 + 14x – 24x – 16\)
Step 2: Combine like terms:
= \(21x^2 – 10x – 16\)
Answer: 21x² – 10x – 16

ii. \((px – q)(px + q)\)

Step 1: Use identity \((a – b)(a + b) = a^2 – b^2\)
= \((px)^2 – q^2\)
= \(p^2x^2 – q^2\)
Answer: p²x² – q²

iii. \((5a + 5b – c)(2b – 3c)\)

Step 1: Multiply each term in first bracket with second bracket:
= \(5a \cdot 2b + 5a \cdot (-3c) + 5b \cdot 2b + 5b \cdot (-3c) – c \cdot 2b – c \cdot (-3c)\)
= \(10ab – 15ac + 10b^2 – 15bc – 2bc + 3c^2\)
Step 2: Combine like terms:
= \(10ab – 15ac + 10b^2 – 17bc + 3c^2\)
Answer: 10ab – 15ac + 10b² – 17bc + 3c²

iv. \((4x – 5y)(5x – 4y)\)

Step 1: Multiply using distributive property:
= \(4x \cdot 5x + 4x \cdot (-4y) – 5y \cdot 5x – 5y \cdot (-4y)\)
= \(20x^2 – 16xy – 25xy + 20y^2\)
Step 2: Combine like terms:
= \(20x^2 – 41xy + 20y^2\)
Answer: 20x² – 41xy + 20y²

v. \((3y + 4z)(3y – 4z) + (2y + 7z)(y + z)\)

Step 1: Apply identity on first part:
= \((3y)^2 – (4z)^2\)
= \(9y^2 – 16z^2\)
Step 2: Multiply second part:
= \(2y \cdot y + 2y \cdot z + 7z \cdot y + 7z \cdot z\)
= \(2y^2 + 2yz + 7yz + 7z^2\)
Step 3: Combine both results:
= \(9y^2 – 16z^2 + 2y^2 + 9yz + 7z^2\)
Step 4: Final simplification:
= \(11y^2 + 9yz – 9z^2\)
Answer: 11y² + 9yz – 9z²


Q5: The adjacent sides of a rectangle are \(x^2-4xy+7y^2\) and \(x^3-5xy^2\). Find its area.

Step 1: Area of a rectangle = length × breadth
So we multiply the two given expressions: \[ (x^2 – 4xy + 7y^2)(x^3 – 5xy^2) \]Step 2: Expand using distributive property (each term of the first bracket multiplies each term of the second bracket): \[ = x^2(x^3 – 5xy^2) – 4xy(x^3 – 5xy^2) + 7y^2(x^3 – 5xy^2) \]Step 3: Multiply each term: \[ = x^5 – 5x^3y^2 \quad \text{(First term)} \\ – 4x^4y + 20x^2y^3 \quad \text{(Second term)} \\ + 7x^3y^2 – 35xy^4 \quad \text{(Third term)} \\ \]Step 4: Combine like terms: \[ = x^5 – 4x^4y + (-5x^3y^2 + 7x^3y^2) + 20x^2y^3 – 35xy^4 \\ = x^5 – 4x^4y + 2x^3y^2 + 20x^2y^3 – 35xy^4 \]Answer: Area of the rectangle = \(x^5 – 4x^4y + 2x^3y^2 + 20x^2y^3 – 35xy^4\)


Q6: The base and the altitude of a triangle are \(\left(3x-4y\right)\) and \(\left(6x+5y\right)\) respectively. Find its area.

Step 1: Area of a triangle is given by the formula: \[ \text{Area} = \frac{1}{2} \times \text{base} \times \text{height} \] Substitute the given expressions: \[ \text{Area} = \frac{1}{2} \times (3x – 4y) \times (6x + 5y) \]Step 2: Expand the binomials using distributive property: \[ (3x – 4y)(6x + 5y) = 3x \cdot 6x + 3x \cdot 5y – 4y \cdot 6x – 4y \cdot 5y \\ = 18x^2 + 15xy – 24xy – 20y^2 \]Step 3: Combine like terms: \[ = 18x^2 – 9xy – 20y^2 \]Step 4: Multiply by \(\frac{1}{2}\): \[ \text{Area} = \frac{1}{2}(18x^2 – 9xy – 20y^2) = 9x^2 – \frac{9}{2}xy – 10y^2 \]Answer: Area of the triangle = \(9x^2 – \frac{9}{2}xy – 10y^2\)


Q7: Multiply \(-4xy^3\) and \(6x^2y\) and verify your result for x = 2 and y = 1.

i. Multiplying the expressions
Step 1: Multiply the coefficients and the variables: \[ (-4xy^3) \cdot (6x^2y) = (-4 \cdot 6)(x \cdot x^2)(y^3 \cdot y) \]Step 2: Simplify: \[ = -24x^3y^4 \]ii. Verification for \(x = 2\), \(y = 1\)
Step 3: Evaluate both original expressions:
First term: \[ -4xy^3 = -4(2)(1)^3 = -8 \] Second term: \[ 6x^2y = 6(2)^2(1) = 6(4)(1) = 24 \]Step 4: Multiply the evaluated values: \[ -8 \times 24 = -192 \]Step 5: Now verify the simplified expression \(-24x^3y^4\):
Substitute \(x = 2\), \(y = 1\): \[ -24(2)^3(1)^4 = -24(8)(1) = -192 \]Answer: Product = \(-24x^3y^4\); Verified for \(x = 2\), \(y = 1\): Result = \(-192\)


Q8: Find the value of \(\left(3x^3\right)\times\left(-5xy^2\right)\times\left(2x^2yz^3\right)\) for x = 1, y = 2 and z = 3.

i. Multiply the expressions algebraically
Step 1: Multiply the coefficients and like terms: \[ (3x^3) \cdot (-5xy^2) \cdot (2x^2yz^3) \\ = (3 \cdot -5 \cdot 2)(x^3 \cdot x \cdot x^2)(y^2 \cdot y)(z^3) \]Step 2: Simplify: \[ = -30x^6y^3z^3 \]ii. Substitute \(x = 1\), \(y = 2\), \(z = 3\) into the expression
Step 3: Evaluate: \[ -30(1)^6(2)^3(3)^3 = -30(1)(8)(27) \]Step 4: Final calculation: \[ -30 \times 8 = -240,\quad -240 \times 27 = -6480 \]Answer: Value = \(-6480\)


Q9: Evaluate \(\left(3x^4y^2\right)\left(2x^2y^3\right)\) for x = 1 and y = 2.

i. Multiply the algebraic expressions
Step 1: Multiply the coefficients and variables: \[ (3x^4y^2) \times (2x^2y^3) = (3 \times 2)(x^{4+2})(y^{2+3}) = 6x^6y^5 \]ii. Substitute values \(x=1\), \(y=2\)
Step 2: Calculate powers: \[ x^6 = 1^6 = 1, \quad y^5 = 2^5 = 32 \]Step 3: Substitute and simplify: \[ 6 \times 1 \times 32 = 192 \]Answer: Value of the expression = \(192\)


Q10: Evaluate \(\left(x^5\right)\times\left(3x^2\right)\times\left(-2x\right)\) for x = 1

i. Multiply the expressions algebraically
Step 1: Multiply coefficients and powers of \(x\): \[ x^5 \times 3x^2 \times (-2x) = (1 \times 3 \times -2) \times x^{5 + 2 + 1} = -6x^8 \]ii. Substitute \(x = 1\)
Step 2: Calculate: \[ -6 \times (1)^8 = -6 \times 1 = -6 \]Answer: Value of the expression = \(-6\)


Q11: Divide:

i. \(-70a^3\) by \(14a^2\)

Step 1: Divide coefficients: \(\frac{-70}{14} = -5\)
Step 2: Subtract powers of \(a\): \(a^{3-2} = a^1 = a\)
Answer: \(-5a\)

ii. \(24x^3y^3\) by \(-8y^2\)

Step 1: Divide coefficients: \(\frac{24}{-8} = -3\)
Step 2: Divide variables: \(x^3 \div 1 = x^3\), \(y^{3-2} = y^1 = y\)
Answer: \(-3x^3y\)

iii. \(15a^4b\) by \(-5a^3b\)

Step 1: Divide coefficients: \(\frac{15}{-5} = -3\)
Step 2: Divide variables: \(a^{4-3} = a^1 = a\), \(b^{1-1} = b^0 = 1\)
Answer: \(-3a\)

iv. \(-24x^4d^3\) by \(-2x^2d^5\)

Step 1: Divide coefficients: \(\frac{-24}{-2} = 12\)
Step 2: Divide variables: \(x^{4-2} = x^2\), \(d^{3-5} = d^{-2} = \frac{1}{d^2}\)
Answer: \(12x^2 \div d^2 = \frac{12x^2}{d^2}\)

v. \(63a^4b^5c^6\) by \(-9a^2b^4c^3\)

Step 1: Divide coefficients: \(\frac{63}{-9} = -7\)
Step 2: Divide variables: \(a^{4-2} = a^2\), \(b^{5-4} = b^1 = b\), \(c^{6-3} = c^3\)
Answer: \(-7a^2bc^3\)

vi. \(8x – 10y + 6c\) by \(2\)

Step 1: Divide each term by 2: \[ \frac{8x}{2} – \frac{10y}{2} + \frac{6c}{2} = 4x – 5y + 3c \] Answer: \(4x – 5y + 3c\)

vii. \(15a^3b^4 – 10a^4b^3 – 25a^3b^6\) by \(-5a^3b^2\)

Step 1: Divide each term separately: \[ \frac{15a^3b^4}{-5a^3b^2} = -3b^{4-2} = -3b^2 \\ \frac{-10a^4b^3}{-5a^3b^2} = 2a^{4-3}b^{3-2} = 2ab \\ \frac{-25a^3b^6}{-5a^3b^2} = 5b^{6-2} = 5b^4 \] Answer: \(-3b^2 + 2ab + 5b^4\)

viii. \(-14x^6y^3 – 21x^4y^5 + 7x^5y^4\) by \(7x^2y^2\)

Step 1: Divide each term: \[ \frac{-14x^6y^3}{7x^2y^2} = -2x^{6-2}y^{3-2} = -2x^4y \\ \frac{-21x^4y^5}{7x^2y^2} = -3x^{4-2}y^{5-2} = -3x^2y^3 \\ \frac{7x^5y^4}{7x^2y^2} = x^{5-2}y^{4-2} = x^3y^2 \] Answer: \(-2x^4y – 3x^2y^3 + x^3y^2\)

ix. \(a^2 + 7a + 12\) by \(a + 4\)

Step 1: Perform polynomial division:
Divide \(a^2\) by \(a\): \(a\)
Multiply \(a\) by \(a + 4\): \(a^2 + 4a\)
Subtract: \((a^2 + 7a + 12) – (a^2 + 4a) = 3a + 12\)
Divide \(3a\) by \(a\): \(3\)
Multiply \(3\) by \(a + 4\): \(3a + 12\)
Subtract: \((3a + 12) – (3a + 12) = 0\)
Answer: \(a + 3\)

x. \(x^2 + 3x – 54\) by \(x – 6\)

Step 1: Polynomial division:
Divide \(x^2\) by \(x\): \(x\)
Multiply \(x\) by \(x – 6\): \(x^2 – 6x\)
Subtract: \((x^2 + 3x – 54) – (x^2 – 6x) = 9x – 54\)
Divide \(9x\) by \(x\): \(9\)
Multiply \(9\) by \(x – 6\): \(9x – 54\)
Subtract: \((9x – 54) – (9x – 54) = 0\)
Answer: \(x + 9\)

xi. \(12x^2 + 7xy – 12y^2\) by \(3x + 4y\)

Step 1: Polynomial division:
Divide \(12x^2\) by \(3x\): \(4x\)
Multiply \(4x\) by \(3x + 4y\): \(12x^2 + 16xy\)
Subtract: \((12x^2 + 7xy – 12y^2) – (12x^2 + 16xy) = -9xy – 12y^2\)
Divide \(-9xy\) by \(3x\): \(-3y\)
Multiply \(-3y\) by \(3x + 4y\): \(-9xy – 12y^2\)
Subtract: \((-9xy – 12y^2) – (-9xy – 12y^2) = 0\)
Answer: \(4x – 3y\)

xii. \(x^6 – 8\) by \(x^2 – 2\)

Step 1: Polynomial division:
Divide \(x^6\) by \(x^2\): \(x^4\)
Multiply \(x^4\) by \(x^2 – 2\): \(x^6 – 2x^4\)
Subtract: \((x^6 – 8) – (x^6 – 2x^4) = 2x^4 – 8\)
Divide \(2x^4\) by \(x^2\): \(2x^2\)
Multiply \(2x^2\) by \(x^2 – 2\): \(2x^4 – 4x^2\)
Subtract: \((2x^4 – 8) – (2x^4 – 4x^2) = 4x^2 – 8\)
Divide \(4x^2\) by \(x^2\): \(4\)
Multiply \(4\) by \(x^2 – 2\): \(4x^2 – 8\)
Subtract: \((4x^2 – 8) – (4x^2 – 8) = 0\)
Answer: \(x^4 + 2x^2 + 4\)

xiii. \(6x^3 – 13x^2 – 13x + 30\) by \(2x^2 – x – 6\)

Step 1: Polynomial division:
Divide \(6x^3\) by \(2x^2\): \(3x\)
Multiply \(3x\) by \(2x^2 – x – 6\): \(6x^3 – 3x^2 – 18x\)
Subtract: \((6x^3 – 13x^2 – 13x + 30) – (6x^3 – 3x^2 – 18x) = -10x^2 + 5x + 30\)
Divide \(-10x^2\) by \(2x^2\): \(-5\)
Multiply \(-5\) by \(2x^2 – x – 6\): \(-10x^2 + 5x + 30\)
Subtract: \((-10x^2 + 5x + 30) – (-10x^2 + 5x + 30) = 0\)
Answer: \(3x – 5\)

xiv. \(4a^2 + 12ab + 9b^2 – 25c^2\) by \(2a + 3b + 5c\)

Step 1: Polynomial division:
Divide \(4a^2\) by \(2a\): \(2a\)
Multiply \(2a\) by \(2a + 3b + 5c\): \(4a^2 + 6ab + 10ac\)
Subtract: \((4a^2 + 12ab + 9b^2 – 25c^2) – (4a^2 + 6ab + 10ac) = 6ab + 9b^2 – 10ac – 25c^2\)
Divide \(6ab\) by \(2a\): \(3b\)
Multiply \(3b\) by \(2a + 3b + 5c\): \(6ab + 9b^2 + 15bc\)
Subtract: \((6ab + 9b^2 – 10ac – 25c^2) – (6ab + 9b^2 + 15bc) = -10ac – 15bc – 25c^2\)
Divide \(-10ac\) by \(2a\): \(-5c\)
Multiply \(-5c\) by \(2a + 3b + 5c\): \(-10ac – 15bc – 25c^2\)
Subtract: \((-10ac – 15bc – 25c^2) – (-10ac – 15bc – 25c^2) = 0\)
Answer: \(2a + 3b – 5c\)

xv. \(16 + 8x + x^6 – 8x^3 – 2x^4 + x^2\) by \(x + 4 – x^3\)

Step 1: Rewrite divisor: \(x + 4 – x^3 = -x^3 + x + 4\)
Polynomial division is complex; rearranging dividend and divisor in descending powers:
Dividend: \(x^6 – 8x^3 – 2x^4 + x^2 + 8x + 16\)
Sort dividend: \(x^6 – 2x^4 – 8x^3 + x^2 + 8x + 16\)
Divisor: \(-x^3 + x + 4\)
Proceed polynomial division:
Divide \(x^6\) by \(-x^3\): \(-x^3\)
Multiply \(-x^3\) by \(-x^3 + x + 4\): \(x^6 – x^4 – 4x^3\)
Subtract: \[ (x^6 – 2x^4 – 8x^3 + x^2 + 8x + 16) – (x^6 – x^4 – 4x^3) = (-2x^4 + x^4) + (-8x^3 + 4x^3) + x^2 + 8x + 16 \\ = -x^4 – 4x^3 + x^2 + 8x + 16 \] Divide \(-x^4\) by \(-x^3\): \(x\)
Multiply \(x\) by \(-x^3 + x + 4\): \(-x^4 + x^2 + 4x\)
Subtract: \[ (-x^4 – 4x^3 + x^2 + 8x + 16) – (-x^4 + x^2 + 4x) = -4x^3 + (x^2 – x^2) + (8x – 4x) + 16 \\ = -4x^3 + 4x + 16 \] Divide \(-4x^3\) by \(-x^3\): 4
Multiply \(4\) by \(-x^3 + x + 4\): \(-4x^3 + 4x + 16\)
Subtract: \[ (-4x^3 + 4x + 16) – (-4x^3 + 4x + 16) = 0 \] Answer: \(-x^3 + x + 4\)


Q12: Find the quotient and the remainder (if any), when:

i. \(a^3 – 5a^2 + 8a + 15\) is divided by \(a + 1\)

Step 1: Divide \(a^3\) by \(a\): \(a^2\)
Step 2: Multiply \(a^2\) by divisor \(a+1\): \(a^3 + a^2\)
Step 3: Subtract:
\((a^3 – 5a^2 + 8a + 15) – (a^3 + a^2) = -6a^2 + 8a + 15\)
Step 4: Divide \(-6a^2\) by \(a\): \(-6a\)
Step 5: Multiply \(-6a\) by \(a+1\): \(-6a^2 – 6a\)
Step 6: Subtract:
\((-6a^2 + 8a + 15) – (-6a^2 – 6a) = 14a + 15\)
Step 7: Divide \(14a\) by \(a\): \(14\)
Step 8: Multiply \(14\) by \(a+1\): \(14a + 14\)
Step 9: Subtract:
\((14a + 15) – (14a + 14) = 1\)
Step 10: Quotient = \(a^2 – 6a + 14\), remainder = 1
Verification: \[ \text{Dividend} = \text{Divisor} \times \text{Quotient} + \text{Remainder} \\ = (a + 1)(a^2 – 6a + 14) + 1 \\ = a^3 – 6a^2 + 14a + a^2 – 6a + 14 + 1 = a^3 – 5a^2 + 8a + 15 \] Verified!
Answer: Quotient = \(a^2 – 6a + 14\), Remainder = 1

ii. \(3x^4 + 6x^3 – 6x^2 + 2x – 7\) is divided by \(x – 3\)

Step 1: Divide \(3x^4\) by \(x\): \(3x^3\)
Step 2: Multiply \(3x^3\) by divisor \(x – 3\): \(3x^4 – 9x^3\)
Step 3: Subtract:
\((3x^4 + 6x^3 – 6x^2 + 2x – 7) – (3x^4 – 9x^3) = 15x^3 – 6x^2 + 2x – 7\)
Step 4: Divide \(15x^3\) by \(x\): \(15x^2\)
Step 5: Multiply \(15x^2\) by \(x – 3\): \(15x^3 – 45x^2\)
Step 6: Subtract:
\((15x^3 – 6x^2 + 2x – 7) – (15x^3 – 45x^2) = 39x^2 + 2x – 7\)
Step 7: Divide \(39x^2\) by \(x\): \(39x\)
Step 8: Multiply \(39x\) by \(x – 3\): \(39x^2 – 117x\)
Step 9: Subtract:
\((39x^2 + 2x – 7) – (39x^2 – 117x) = 119x – 7\)
Step 10: Divide \(119x\) by \(x\): \(119\)
Step 11: Multiply \(119\) by \(x – 3\): \(119x – 357\)
Step 12: Subtract:
\((119x – 7) – (119x – 357) = 350\)
Step 13: Quotient = \(3x^3 + 15x^2 + 39x + 119\), remainder = 350
Verification: \[ \text{Dividend} = (x – 3)(3x^3 + 15x^2 + 39x + 119) + 350 \] Multiply and verify the expression equals original dividend (left as exercise).
Answer: Quotient = \(3x^3 + 15x^2 + 39x + 119\), Remainder = 350

iii. \(6x^2 + x – 15\) is divided by \(3x + 5\)

Step 1: Divide \(6x^2\) by \(3x\): \(2x\)
Step 2: Multiply \(2x\) by divisor \(3x + 5\): \(6x^2 + 10x\)
Step 3: Subtract:
\((6x^2 + x – 15) – (6x^2 + 10x) = -9x – 15\)
Step 4: Divide \(-9x\) by \(3x\): \(-3\)
Step 5: Multiply \(-3\) by \(3x + 5\): \(-9x – 15\)
Step 6: Subtract:
\((-9x – 15) – (-9x – 15) = 0\)
Step 7: Quotient = \(2x – 3\), remainder = 0
Verification: \[ \text{Dividend} = (3x + 5)(2x – 3) \\ = 6x^2 – 9x + 10x – 15 = 6x^2 + x – 15 \] Verified!
Answer: Quotient = \(2x – 3\), Remainder = 0


Q13: The area of rectangle is \(x^3-8x^2+7\) and one of its sides is \(x-1\). Find the length of the adjacent side.

Area \(= x^3 – 8x^2 + 7\), one side \(= x – 1\)
Step 1: Let the adjacent side be \(L\). Since area = length × breadth, we have: \[ (x – 1) \times L = x^3 – 8x^2 + 7 \]Step 2: To find \(L\), divide the area by the given side: \[ L = \frac{x^3 – 8x^2 + 7}{x – 1} \]Step 3: Perform polynomial division of \(x^3 – 8x^2 + 7\) by \(x – 1\):
Divide \(x^3\) by \(x\): \(x^2\)
Multiply \(x^2 \times (x – 1) = x^3 – x^2\)
Subtract: \((x^3 – 8x^2 + 7) – (x^3 – x^2) = -7x^2 + 7\)
Divide \(-7x^2\) by \(x\): \(-7x\)
Multiply \(-7x \times (x – 1) = -7x^2 + 7x\)
Subtract: \((-7x^2 + 7) – (-7x^2 + 7x) = -7x + 7\)
Divide \(-7x\) by \(x\): \(-7\)
Multiply \(-7 \times (x – 1) = -7x + 7\)
Subtract: \((-7x + 7) – (-7x + 7) = 0\)
Step 4: Quotient is \(x^2 – 7x – 7\) and remainder is 0.
Answer: Length of the adjacent side = \(x^2 – 7x – 7\)


previous
next

Share the Post:

Leave a Comment

Your email address will not be published. Required fields are marked *

Related Posts​

  • Identities
    Step by Step solutions of Test Yourself Concise Mathematics ICSE Class-8 Maths chapter 12- Identities by Selina is provided.
  • Identities
    Step by Step solutions of Exercise- 12B Concise Mathematics ICSE Class-8 Maths chapter 12- Identities by Selina is provided.

Join Our Newsletter

Name
Email
The form has been submitted successfully!
There has been some error while submitting the form. Please verify all form fields again.

Scroll to Top