Algebraic Expressions

algebraic expressions class 8 selina

Step by Step solutions of Concise Mathematics ICSE Class-8 Maths chapter 11- Algebraic Expressions by Selina is provided.

Table of Contents

Exercise: 11-A

Q1: Multiple Choice Type

i. The sum of \(a-b+ab,\ b-c+bc\) and \(c-a+ca\) is:

Step 1: Write the expression:
\((a – b + ab) + (b – c + bc) + (c – a + ca)\)
Step 2: Rearranging and grouping like terms:
\(a – b + ab + b – c + bc + c – a + ca\)
Step 3: Group same variables:
\((a – a) + (-b + b) + (-c + c) + ab + bc + ca\)
Step 4: Simplify:
\(0 + 0 + 0 + ab + bc + ca = ab + bc + ca\)
Answer: c. \(ab + bc + ca\)

ii. \(\left(x^3-5x^2+7\right)+\left(3x^2+5x-2\right)+\left(2x^3-x+7\right)\) is equal to:

Step 1: Group like terms:
\(x^3 + 2x^3 = 3x^3\)
\(-5x^2 + 3x^2 = -2x^2\)
\(5x – x = 4x\)
\(7 – 2 + 7 = 12\)
Step 2: Final expression:
\(3x^3 – 2x^2 + 4x + 12\)
Answer: a. \(3x^3 – 2x^2 + 4x + 12\)

iii. \(\left(x^3-5x^2+3x+2\right)-\left(6x^2-4x^3+3x+5\right)\) is equal to:

Step 1: Distribute negative sign:
= \(x^3 – 5x^2 + 3x + 2 – 6x^2 + 4x^3 – 3x – 5\)
Step 2: Group like terms:
\(x^3 + 4x^3 = 5x^3\)
\(-5x^2 – 6x^2 = -11x^2\)
\(3x – 3x = 0\)
\(2 – 5 = -3\)
Step 3: Final expression:
\(5x^3 – 11x^2 -3\)
Answer: c. \(5x^3 – 11x^2 – 3\)

iv. \(p-\left(p-q\right)-q-\left(q-p\right)\) is equal to:

Step 1: Remove brackets carefully:
= \(p – p + q – q – q + p\)
Step 2: Simplify:
\((p – p) + (q – q) + (-q) + p = 0 + 0 – q + p\)
= \(p – q\)
Answer: b. \(p – q\)

v. \(\left(ab-bc\right)-\left(ca-bc\right)+\left(ca-ab\right)\) is:

Step 1: Expand the terms:
= \(ab – bc – ca + bc + ca – ab\)
Step 2: Group like terms:
\(ab – ab = 0\), \(-bc + bc = 0\), \(-ca + ca = 0\)
Step 3: Final expression:
= 0
Answer: d. 0


Q2: Separate the constants and variables from the following:
\(-7,\ 7+x,\ 7x+yz,\ \sqrt5,\ \sqrt{xy},\ \frac{3yz}{8},\ 4.5y-3x,\ 8-5,\ 8-5x,\ 8x-5y\times p\ and\ 3y^2z\div4x\)

i. Identify constants:

Step 1: A constant is a term that has no variable — just a number.
Step 2: Go through each expression:
– \(-7\) → constant
– \(7 + x\) → contains variable \(x\)
– \(7x + yz\) → variables \(x, y, z\)
– \(\sqrt{5}\) → constant (since 5 is a number)
– \(\sqrt{xy}\) → contains variables \(x, y\)
– \(\frac{3yz}{8}\) → variables \(y, z\)
– \(4.5y – 3x\) → variables \(x, y\)
– \(8 – 5\) → constant = 3
– \(8 – 5x\) → variable \(x\)
– \(8x – 5y \times p\) → variables \(x, y, p\)
– \(3y^2z \div 4x\) → variables \(x, y, z\)
Answer:Constants: \(-7,\ \sqrt{5},\ 8 – 5 \)

ii. Identify expressions containing variables:

Step 1: List remaining expressions that include variables:
– \(7 + x\) → variable \(x\)
– \(7x + yz\) → variables \(x, y, z\)
– \(\sqrt{xy}\) → variables \(x, y\)
– \(\frac{3yz}{8}\) → variables \(y, z\)
– \(4.5y – 3x\) → variables \(x, y\)
– \(8 – 5x\) → variable \(x\)
– \(8x – 5y \times p\) → variables \(x, y, p\)
– \(3y^2z \div 4x\) → variables \(x, y, z\)
Answer:Expressions with variables: \(7 + x,\ 7x + yz,\ \sqrt{xy},\ \frac{3yz}{8},\ 4.5y – 3x,\ 8 – 5x,\ 8x – 5y \times p,\ 3y^2z \div 4x\)


Q3: Write the number of terms in each of the following polynomials:

i. \(5x^2 + 3 \times a x\)

Step 1: Simplify the expression:
\(5x^2 + 3ax\)
Step 2: Count individual terms:
→ \(5x^2\) is one term
→ \(3ax\) is another term
Answer: 2 terms

ii. \(x \div 4 – 7\)

Step 1: Simplify the expression:
\(\frac{x}{4} – 7\)
Step 2: Count the terms:
→ \(\frac{x}{4}\) is one term
→ \(-7\) is another term
Answer: 2 terms

iii. \(ax – by + y \times z\)

Step 1: Simplify the expression:
\(ax – by + yz\)
Step 2: Count the terms:
→ \(ax\) is one term
→ \(-by\) is another term
→ \(yz\) is the third term
Answer: 3 terms

iv. \(23 + a \times b \div 2\)

Step 1: Simplify the expression:
\(23 + \frac{ab}{2}\)
Step 2: Count the terms:
→ \(23\) is one term
→ \(\frac{ab}{2}\) is another term
Answer: 2 terms


Q4: Separate monomials, binomials, trinomials and multinomial from the following algebraic expressions:
\(8-3x,\ xy^2,\ 3y^2-5y+8,\ 9x-3x^2+15x^3-7,\ 3x\times5y,\ 3x\div5y,\ 2y\div7+3x-7\ and\ 4-ax^2+bx+y\)

Monomials (1 term):
xy²
3x × 5y
(3x ÷ 5y) = 3x/5y
Binomials (2 terms):
8 – 3x
Trinomials (3 terms):
3y² – 5y + 8
(2y ÷ 7 + 3x – 7)
Polynomials (more than 3 terms):
8 – 3x
3y² – 5y + 8
(2y ÷ 7 + 3x – 7)
9x – 3x² + 15x³ – 7
4 – ax² + bx + y
Answer:
Monomials: xy², 3x × 5y, 3x ÷ 5y
Binomials: 8 – 3x
Trinomials: 3y² – 5y + 8, 2y ÷ 7 + 3x – 7
Multinomials: 8 – 3x, 3y² – 5y + 8, 2y ÷ 7 + 3x – 7, 9x – 3x² + 15x³ – 7, 4 – ax² + bx + y



Q5: Write the degree of each polynomial given below:

i. \(xy + 7z\)

Explanation: Degree of term \(xy = 1+1 = 2\), term \(7z = 1\).
Answer: 2

ii. \(x^2 – 6x^3 + 8\)

Explanation: Highest power of x is in \(x^3\).
Answer: 3

iii. \(y – 6y^2 + 5y^8\)

Explanation: Highest power of y is in \(y^8\).
Answer: 8

iv. \(xyz – 3\)

Explanation: Degree of \(xyz = 1+1+1 = 3\).
Answer: 3

v. \(xy + yz^2 – zx^3\)

Explanation: Degrees: \(xy = 2\), \(yz^2 = 1+2=3\), \(zx^3 = 1+3 = 4\)
Answer: 4

vi. \(x^5y^7 – 8x^3y^8 + 10x^4y^4z^4\)

Explanation: Degrees:
\(x^5y^7 = 12\),
\(x^3y^8 = 11\),
\(x^4y^4z^4 = 12\)
Maximum degree = 12
Answer: 12


Q6: Write the coefficient of:

i. ab in 7abx

Answer: 7x

ii. 7a in 7abx

Answer: bx

iii. \(5x^2\) in \(5x^2 – 5x\)

Answer: 1

iv. 8 in \(a^2 – 8ax + a\)

Answer: -ax

v. \(4xy\) in \(x^2 – 4xy + y^2\)

Answer: -1


Q7: Evaluate:

i. \(-7x^2+18x^2+3x^2-5x^2\)

Step 1: Combine like terms of \(x^2\):
\(-7x^2 + 18x^2 + 3x^2 – 5x^2 = (18 – 7 + 3 – 5)x^2\)
Step 2: Simplify the coefficients:
\((18 – 7 + 3 – 5) = 9\)
Answer: \(9x^2\)

ii. \(b^2y – 9b^2y + 2b^2y – 5b^2y\)

Step 1: Combine like terms of \(b^2y\):
\((1 – 9 + 2 – 5)b^2y\)
Step 2: Simplify the coefficients:
\((1 – 9 + 2 – 5) = -11\)
Answer: \(-11b^2y\)

iii. \(abx – 15abx – 10abx + 32abx\)

Step 1: Combine like terms of \(abx\):
\((1 – 15 – 10 + 32)abx\)
Step 2: Simplify the coefficients:
\((1 – 15 – 10 + 32) = 8\)
Answer: \(8abx\)

iv. \(7x – 9y + 3 – 3x – 5y + 8\)

Step 1: Group like terms:
\((7x – 3x) + (-9y – 5y) + (3 + 8)\)
Step 2: Simplify each group:
\(4x – 14y + 11\)
Answer: \(4x – 14y + 11\)

v. \(3x^2 + 5xy – 4y^2 + x^2 – 8xy – 5y^2\)

Step 1: Group like terms:
\((3x^2 + x^2) + (5xy – 8xy) + (-4y^2 – 5y^2)\)
Step 2: Simplify each group:
\(4x^2 – 3xy – 9y^2\)
Answer: \(4x^2 – 3xy – 9y^2\)


Q8: Add:

i. \(5a + 3b,\ a – 2b,\ 3a + 5b\)

Step 1: Write all expressions:
\(5a + 3b + a – 2b + 3a + 5b\)
Step 2: Group like terms:
\((5a + a + 3a) + (3b – 2b + 5b)\)
Step 3: Simplify:
\(9a + 6b\)
Answer: \(9a + 6b\)

ii. \(8x – 3y + 7z,\ -4x + 5y – 4z,\ -x – y – 2z\)

Step 1: Combine all expressions:
\(8x – 3y + 7z – 4x + 5y – 4z – x – y – 2z\)
Step 2: Group like terms:
\((8x – 4x – x) + (-3y + 5y – y) + (7z – 4z – 2z)\)
Step 3: Simplify each group:
\(3x + 1y + 1z = 3x + y + z\)
Answer: \(3x + y + z\)

iii. \(3b – 7c + 10,\ 5c – 2b – 15,\ 15 + 12c + b\)

Step 1: Add all expressions:
\(3b – 7c + 10 + 5c – 2b – 15 + 15 + 12c + b\)
Step 2: Group like terms:
\((3b – 2b + b) + (-7c + 5c + 12c) + (10 – 15 + 15)\)
Step 3: Simplify:
\(2b + 10c + 10\)
Answer: \(2b + 10c + 10\)

iv. \(a – 3b + 3,\ 2a + 5 – 3c,\ 6c – 15 + 6b\)

Step 1: Add all expressions:
\(a – 3b + 3 + 2a + 5 – 3c + 6c – 15 + 6b\)
Step 2: Group like terms:
\((a + 2a) + (-3b + 6b) + (-3c + 6c) + (3 + 5 – 15)\)
Step 3: Simplify:
\(3a + 3b + 3c – 7\)
Answer: \(3a + 3b + 3c – 7\)

v. \(13ab – 9cd – xy,\ 5xy,\ 15cd – 7ab,\ 6xy – 3cd\)

Step 1: Combine all expressions:
\(13ab – 9cd – xy + 5xy + 15cd – 7ab + 6xy – 3cd\)
Step 2: Group like terms:
\((13ab – 7ab) + (-9cd + 15cd – 3cd) + (-xy + 5xy + 6xy)\)
Step 3: Simplify:
\(6ab + 3cd + 10xy\)
Answer: \(6ab + 3cd + 10xy\)

vi. \(x^3 – x^2y + 5xy^2 + y^3,\ -x^3 – 9xy^2 + y^3,\ 3x^2y + 9xy^2\)

Step 1: Combine all terms:
\(x^3 – x^2y + 5xy^2 + y^3 – x^3 – 9xy^2 + y^3 + 3x^2y + 9xy^2\)
Step 2: Group like terms:
\((x^3 – x^3) + (-x^2y + 3x^2y) + (5xy^2 – 9xy^2 + 9xy^2) + (y^3 + y^3)\)
Step 3: Simplify:
\(0 + 2x^2y + 5xy^2 + 2y^3\)
Answer: \(2x^2y + 5xy^2 + 2y^3\)


Q9: Find the total savings of a boy who saves ₹\(\left(4x-6y\right)\), ₹\(\left(6x+2y\right)\), ₹\(\left(4y-x\right)\) and ₹\(\left(y-2x\right)\) in four consecutive weeks.

Expression: Add the four expressions:
(4x − 6y), (6x + 2y), (4y − x), and (y − 2x)
Step 1: Write all the expressions to be added:
(4x − 6y) + (6x + 2y) + (4y − x) + (y − 2x)
Step 2: Group like terms together:
= (4x + 6x − x − 2x) + (−6y + 2y + 4y + y)
Step 3: Add the coefficients of like terms:
= (4 + 6 − 1 − 2)x + (−6 + 2 + 4 + 1)y
= (7)x + (1)y
Step 4: Simplify:
= 7x + y
Answer: The total savings = ₹(7x + y)


Q10: Subtract:

i. \(4xy^2\) from \(3xy^2\)

Required Expression: \(3xy^2 – 4xy^2\)
Answer: \(-xy^2\)

ii. \(-2x^2y + 3xy^2\) from \(8x^2y\)

Required Expression: \(8x^2y – (-2x^2y + 3xy^2)\)
= \(8x^2y + 2x^2y – 3xy^2\)
= \(10x^2y – 3xy^2\)
Answer: \(10x^2y – 3xy^2\)

iii. \(3a – 5b + c + 2d\) from \(7a – 3b + c – 2d\)

Required Expression: \((7a – 3b + c – 2d) – (3a – 5b + c + 2d)\)
= \(7a – 3b + c – 2d – 3a + 5b – c – 2d\)
= \((7a – 3a) + (-3b + 5b) + (c – c) + (-2d – 2d)\)
= \(4a + 2b – 4d\)
Answer: \(4a + 2b – 4d\)

iv. \(x^3 – 4x – 1\) from \(3x^3 – x^2 + 6\)

Required Expression: \((3x^3 – x^2 + 6) – (x^3 – 4x – 1)\)
= \(3x^3 – x^2 + 6 – x^3 + 4x + 1\)
= \((3x^3 – x^3) – x^2 + 4x + (6 + 1)\)
= \(2x^3 – x^2 + 4x + 7\)
Answer: \(2x^3 – x^2 + 4x + 7\)

v. \(6a + 3\) from \(a^3 – 3a^2 + 4a + 1\)

Required Expression: \((a^3 – 3a^2 + 4a + 1) – (6a + 3)\)
= \(a^3 – 3a^2 + 4a + 1 – 6a – 3\)
= \(a^3 – 3a^2 – 2a – 2\)
Answer: \(a^3 – 3a^2 – 2a – 2\)

vi. \(cab – 4cad – cbd\) from \(3abc + 5bcd – cda\)

Required Expression: \((3abc + 5bcd – cda) – (cab – 4cad – cbd)\)
= \(3abc + 5bcd – cda – cab + 4cad + cbd\)
= \(3abc – abc + 5bcd + cbd – cda + 4cad\)
= \(2abc + 6bcd + 3cda\)
Answer: \(2abc + 6bcd – 3cda\)

vii. \(a^2 + ab + b^2\) from \(4a^2 – 3ab + 2b^2\)

Required Expression: \((4a^2 – 3ab + 2b^2) – (a^2 + ab + b^2)\)
= \(4a^2 – 3ab + 2b^2 – a^2 – ab – b^2\)
= \((4a^2 – a^2) + (-3ab – ab) + (2b^2 – b^2)\)
= \(3a^2 – 4ab + b^2\)
Answer: \(3a^2 – 4ab + b^2\)


Q11:

i. Take away \(-3x^3+4x^2-5x+6\) from \(3x^3-4x^2+5x-6\)

Step 1: Write the expression to subtract.
= \([3x^3 – 4x^2 + 5x – 6] – [-3x^3 + 4x^2 – 5x + 6]\)
Step 2: Remove brackets and change signs of second polynomial.
= \(3x^3 – 4x^2 + 5x – 6 + 3x^3 – 4x^2 + 5x – 6\)
Step 3: Combine like terms.
= \((3x^3 + 3x^3) + (-4x^2 – 4x^2) + (5x + 5x) + (-6 – 6)\)
= \(6x^3 – 8x^2 + 10x – 12\)
Answer: \(6x^3 – 8x^2 + 10x – 12\)

ii. Take \(m^2+m+4\) from \(-m^2+3m+6\) and the result from \(m^2+m+1\).

Step 1: First subtract the two polynomials.
= \([-m^2 + 3m + 6] – [m^2 + m + 4]\)
Step 2: Change signs of second polynomial.
= \(-m^2 + 3m + 6 – m^2 – m – 4\)
Step 3: Combine like terms.
= \(-2m^2 + 2m + 2\)
Step 4: Now subtract from \(m^2 + m + 1\)
= \([m^2 + m + 1] – [-2m^2 + 2m + 2]\)
Step 5: Change signs.
= \(m^2 + m + 1 + 2m^2 – 2m – 2\)
Step 6: Combine like terms.
= \((m^2 + 2m^2) + (m – 2m) + (1 – 2)\)
= \(3m^2 – m – 1\)
Answer: \(3m^2 – m – 1\)


Q12: Subtract the sum of \(5y^2+y-3\) and \(y^2-3y+7\) to obtain \(6y^2+y-2\)?

Step 1: Find the sum of two polynomials.
= \([5y^2 + y – 3] + [y^2 – 3y + 7]\)
= \(6y^2 – 2y + 4\)
Step 2: Subtract the sum from given expression:
= \([6y^2 + y – 2] – [6y^2 – 2y + 4]\)
Step 3: Change signs.
= \(6y^2 + y – 2 – 6y^2 + 2y – 4\)
Step 4: Combine like terms.
= \(0y^2 + 3y – 6\)
= \(3y – 6\)
Answer: \(3y – 6\)


Q13: What must be added to \(x^4-x^3+x^2+x+3\) to obtain \(x^4+x^2-1\)?

Step 1: Let the required polynomial be \(P(x)\)
Then, \(x^4 – x^3 + x^2 + x + 3 + P(x) = x^4 + x^2 – 1\)
Step 2: Transpose given expression.
\(P(x) = [x^4 + x^2 – 1] – [x^4 – x^3 + x^2 + x + 3]\)
Step 3: Change signs of second polynomial.
= \(x^4 + x^2 – 1 – x^4 + x^3 – x^2 – x – 3\)
Step 4: Combine like terms.
= \(0 + x^3 + 0 – x – 4\)
= \(x^3 – x – 4\)
Answer: \(x^3 – x – 4\)


Q14:

i. How much more than \(2x^2+4xy+2y^2\) is \(5x^2+10xy-y^2\)?

Step 1: Subtract the smaller from larger.
= \([5x^2 + 10xy – y^2] – [2x^2 + 4xy + 2y^2]\)
Step 2: Change signs of second polynomial.
= \(5x^2 + 10xy – y^2 – 2x^2 – 4xy – 2y^2\)
Step 3: Combine like terms.
= \(3x^2 + 6xy – 3y^2\)
Answer: \(3x^2 + 6xy – 3y^2\)

ii. How much less \(2a^2+1\) is than \(3a^2-6\)?

Step 1: Subtract the smaller from the larger.
= \([3a^2 – 6] – [2a^2 + 1]\)
Step 2: Change signs.
= \(3a^2 – 6 – 2a^2 – 1\)
Step 3: Combine like terms.
= \(a^2 – 7\)
Answer: \(a^2 – 7\)


Q15: If \(x=6a+8b+9c;y=2b-3a-6c\) and \(z=c-b+3a\); find:

i. \(x + y + z\)

Step 1: Write expressions for x, y, and z.
  \(x = 6a + 8b + 9c\)
  \(y = 2b – 3a – 6c\)
  \(z = c – b + 3a\)
Step 2: Add them: \(x + y + z\)
  = \((6a + 8b + 9c) + (2b – 3a – 6c) + (c – b + 3a)\)
Step 3: Combine like terms:
a-terms: \(6a – 3a + 3a = 6a\)
  b-terms: \(8b + 2b – b = 9b\)
  c-terms: \(9c – 6c + c = 4c\)
Answer: x + y + z = 6a + 9b + 4c

ii. \(x – y + z\)

Step 1: Use expressions for z and y:
\(x = 6a + 8b + 9c\)
  \(z = c – b + 3a\)
  \(y = 2b – 3a – 6c\)
Step 2: Substitute: \(x – y + z = (6a + 8b + 9c) – (2b – 3a – 6c) + (c – b + 3a)\)
Step 3: Remove brackets (change signs carefully):
  = \(6a + 8b + 9c – 2b + 3a + 6c + c – b + 3a\)
Step 4: Combine like terms:
  a-terms: \(6a + 3a + 3a = 12a\)
  b-terms: \(8b – 2b – b = 5b\)
  c-terms: \(9c + 6c + c = 16c\)
Answer: x – y + z = 12a – 5b + 16c

iii. \(2x – y – 3z\)

Step 1: Use expressions:
\(x = 6a + 8b + 9c\)
  \(z = c – b + 3a\)
  \(y = 2b – 3a – 6c\)
Step 2: Find \(2x – y – 3z\)
  = \(2(6a + 8b + 9c) – (2b – 3a – 6c) – 3(c – b + 3a)\)
Step 3: Expand each:
  = \(12a + 16b + 18c – 2b + 3a + 6c – 3c + 3b – 9a\)
Step 4: Combine like terms:
  a-terms: \(12a + 3a – 9a = 6a\)
  b-terms: \(16b – 2b + 3b = 17b\)
  c-terms: \(18c + 6c – 3c = 21c\)
Answer: 2x – y – 3z = 6a + 17b + 21c

iv. \(3y – 2z – 5x\)

Step 1: Use expressions for x, y, z:
  \(x = 6a + 8b + 9c\)
  \(y = 2b – 3a – 6c\)
  \(z = c – b + 3a\)
Step 2: Expand each:
  \(3y = 6b – 9a – 18c\)
  \(2z = 2c – 2b + 6a\)
  \(5x = 30a + 40b + 45c\)
Step 3: Combine: \(3y – 2z – 5x\)
  = \((6b – 9a – 18c) – (2c – 2b + 6a) – (30a + 40b + 45c)\)
Step 4: Simplify:
  = \(6b – 9a – 18c – 2c + 2b – 6a – 30a – 40b – 45c\)
Step 5: Combine like terms:
  a-terms: \(-9a – 6a – 30a = -45a\)
  b-terms: \(6b + 2b – 40b = -32b\)
  c-terms: \(-18c – 2c – 45c = -65c\)
Answer: 3y – 2z – 5x = -45a – 32b – 65c


previous
next

Share the Post:

Leave a Comment

Your email address will not be published. Required fields are marked *

Related Posts​

  • Identities
    Step by Step solutions of Test Yourself Concise Mathematics ICSE Class-8 Maths chapter 12- Identities by Selina is provided.
  • Identities
    Step by Step solutions of Exercise- 12B Concise Mathematics ICSE Class-8 Maths chapter 12- Identities by Selina is provided.

Join Our Newsletter

Name
Email
The form has been submitted successfully!
There has been some error while submitting the form. Please verify all form fields again.

Scroll to Top