Squares and Square Roots

squares and square roots class 8 selina

Step by Step solutions of Concise Mathematics ICSE Class-8 Maths chapter 3- Squares and Square Roots by Selina is provided.

Table of Contents

Exercise: 3-B

Q1: Multiple Choice Type

i. If \(\sqrt5=2.24\); the value of \(\sqrt{20}\) is

Step 1:
We know: \[ 20 = 4 \times 5 \Rightarrow \sqrt{20} = \sqrt{4 \times 5} = \sqrt{4} \times \sqrt{5} = 2 \times 2.24 = 4.48 \]Answer: b. 4.48

ii. If \(\sqrt{27.8}=5.27\), the value of \(\sqrt{2780}\) is:

Step 1: \[ 2780 = 27.8 \times 100 \Rightarrow \sqrt{2780} = \sqrt{27.8 \times 100} = \sqrt{27.8} \times \sqrt{100} = 5.27 \times 10 = 52.7 \]Answer: b. 52.7

iii. n is the least natural number that must be added to 23 so that the resulting number is a perfect square, the value of n is:

Step 1:
Let’s test perfect squares greater than 23:
25 − 23 = 2 (25 is a perfect square, 5² = 25)
Answer: b. 2

iv. n is the least natural number that must be subtracted from 23 so that the resulting number is a perfect square, the value of n is:

Step 1:
Let’s test perfect squares less than 23:
16 is the nearest square below 23 → 23 − 16 = 7
Answer: a. 7


Q2: Find square root of:

i. 4761

Step-by-step using division method:

    69
  _______
6| 47 61
  -36       ← 6 × 6 = 36
  -----
   11 61      ← Bring down next pair
 
129| 1161      ← (2×6) = 12
    -1161 	  → 129×9 = 1161
    -----
      0

Answer: 69

ii. 7744

    88
  _______
8| 77 44
  -64       ← 8×8 = 64
  -----
   13 44      ← Bring down next pair
 
168| 1344      ← (2×8) = 16
    -1344      → 168×8 = 1344
     -----
       0

Answer: 88

iii. 15129

    123
  ________
1| 1 51 29
  -1
  ------
   0 51		← Bring down next pair
 
 22| 51      ← (2×1) = 2
    -44      → 2×2 = 44
  ------
      7 29      ← Bring down next pair
 
243| 729      ← (2×12) = 24
    -729      → 243×3 = 729
    ------
       0

Answer: 123

iv. 0.2916

Note: Group digits after decimal in pairs: 29|16

    0.54
  _________
5| 0. 29 16
  -0  25        ← 0×0 = 25
  ------
   0. 04 16      ← Bring down next pair
 
  104| 416      ← (2×0) = 0
      -416      → 104×4 = 416
    --------
        0

Answer: 0.54

v. 0.001225

Group digits: 00|12|25

    0.035
  ___________
0| 00 | 12 | 25
  -00
  -------
    0 12      ← Bring down next pair
 
 03| 12        ← (2×0) = 0
     -9        → 3×3 = 9 
  --------
      3 25      ← Bring down next pair
 
  65| 425      ← (2×3) = 6
     -325      → 65×5 = 325
    ------
      0 

Answer: 0.035

vi. 0.023104

Group digits: 00|23|10|40

    0.152
  _____________
1| 02 31 04
   -1
  --------
    1 31      ← Bring down next pair
 
 25| 131      ← (2×1) = 2
    -125      → 25×5 = 125
    -----
       6 04      ← Bring down next pair
 
  302| 604      ← (2×15) = 30
      -604      → 302×2 = 604
      ------
        0

Answer: 0.152

vii. 27.3529

Group: 27|35|29

    5.23
  ____________
5| 27. 35 29
  -25       ← 5×5 = 25
  ------
    2 35      ← Bring down next pair
 
102| 235      ← (2×5) = 10
    -204      → 102×2 = 204
    --------
      31 29      ← Bring down next pair
 
 1043| 3129      ← (2×52) = 104
      -3129      → 1043×3 = 3129
      -------
        0

Answer: 5.23


Q3: Find the square root:

i. 4.2025

Step-by-step: Group digits as: 04 | 20 | 25

     2.05
  ___________
2| 04 20 25
  -04         ← 2×2 = 4
  -----
    0 20     ← Bring down next pair
 
 40| 20      ← (2×2) = 4
    -00      → 40×0 = 0
    --------
     20 25     ← Bring down next pair
 
 405| 2025      ← (2×20) = 40
     -2025      → 405×5 = 2025
    --------
        0

Answer: 2.05

ii. 531.7636

Step-by-step: Group digits as: 05 | 31 | 76 | 36

     23.06
  _______________
2| 05 31. 76 36
  - 4           ← 2×2 = 4
  ------
     1 31     ← Bring down next pair
 
 43| 131      ← (2×2) = 4
    -129      → 43×3 = 129
    --------
       2 76     ← Bring down next pair
 
   460| 276      ← (2×23) = 46
       -000      → 460×0 = 000
      --------
        276 36     ← Bring down next pair
 
    4606| 27636      ← (2×230) = 460
         -27636      → 4606×6 = 4606
        --------
            0

Answer: 23.06

iii. 0.007225

Step-by-step: Group digits as: 00 | 07 | 22 | 50

     0.085
  _______________
0| 00. 00 72 25
  -00
  ------
    0 00     ← Bring down next pair
 
 00| 000      ← (2×0) = 0
    -000      → 00×0 = 0
    --------
       0 72     ← Bring down next pair
 
    08| 72      ← (2×0) = 0
       -64      → 8×8 = 64
      --------
         8 25     ← Bring down next pair
 
    165| 825      ← (2×8) = 16
        -825      → 165×5 = 825
      --------
         0

Answer: 0.085


Q4: Find the square root of:

i. 245 correct to two places of decimal.

     15.652
  _______________
1| 2 45. 00 00 00
  -1               ← 1×1 = 1
  -------
   1 45     ← Bring down next pair
 
25| 145      ← (2×1) = 2
   -125      → 25×5 = 125
   ------
     20 00     ← Bring down next pair
 
 306| 2000      ← (2×15) = 30
     -1836      → 306×6 = 1836
    --------
       164 00     ← Bring down next pair
 
  3125| 16400      ← (2×156) = 312
       -15625      → 3125×5 = 15625
       --------
          775 00     ← Bring down next pair
 
   31302| 77500      ← (2×1565) = 3130
         -62604      → 31302×2 = 62604
         --------
          14896

Answer: 15.65

ii. 496 correct to three places of decimal.

     22.2710
  __________________
2| 4 96 00 00 00
  -4              ← 2×2 = 4
  ------
   0 96     ← Bring down next pair
 
 42| 96      ← (2×2) = 4
    -84      → 42×2 = 84
    --------
     12 00     ← Bring down next pair
 
 442| 1200      ← (2×22) = 44
      -884      → 442×2 = 884
    --------
       316 00     ← Bring down next pair
 
 4447| 31600      ← (2×222) = 444
       31129      → 4447×7 = 31129
    --------
         471 00     ← Bring down next pair
 
   44541| 47100      ← (2×2227) = 4454
         -44541      → 44541×1 = 44541
         --------
            2559 00     ← Bring down next pair
 
    445420| 255900      ← (2×22271) = 44542
                -0      → 445420×0 = 0
            --------
            255900

Answer: 22.271

iii. 82.6 correct to two places of decimal.

     9.088
  _______________
9| 82. 60 00 00
  -81         ← 9×9 = 81
  ------
    1 60     ← Bring down next pair
 
 180| 160      ← (2×9) = 18
     -000      → 180×0 = 0
    --------
      160 00     ← Bring down next pair
 
 1808| 16000      ← (2×90) = 180
      -14464      → 1808×8 = 14464
    --------
        1536 00     ← Bring down next pair
 
  18168| 153600      ← (2×908) = 1816
        -145344      → 18168×8 = 145344
       --------
           8256

Answer: 9.09

iv. 0.065 correct to three places of decimal.

     0.2549
  __________________
0| 0. 06 50 00 00
  -0
  ------
    0 06     ← Bring down next pair
 
 02| 6      ← (2×0) = 0
    -4      → 2×2 = 4
    -----
     2 50     ← Bring down next pair
 
 45| 250      ← (2×2) = 4
    -225      → 45×5 = 225
    --------
      25 00     ← Bring down next pair
 
  504| 2500      ← (2×25) = 50
      -2016      → 504×4 = 2016
       --------
        484 00     ← Bring down next pair
 
   5089| 48400      ← (2×254) = 508
        -45801      → 5089×9 = 45081
       --------
          2599

Answer: 0.255

v. 5.2005 correct to two places of decimal.

     2.280
  _______________
2| 5. 20 05 00 
  -4          ← 2×2 = 4
  ------
   1 20     ← Bring down next pair
 
 42| 120      ← (2×2) = 4
     -84      → 42× = 84
    --------
      36 05     ← Bring down next pair
 
  448| 3605      ← (2×22) = 44
      -3584      → 448×8 = 3584
       --------
         21 00     ← Bring down next pair
 
   4560| 2100      ← (2×228) = 456
         -000      → 4560×0 = 0
       --------
         2100

Answer: 2.28

vi. 0.602 correct to two places of decimal.

     0.775
  _______________
0| 00. 60 20 00
  - 0
  ------
    0 60     ← Bring down next pair
 
 07| 60      ← (2×0) = 0
    -49      → 7×7 = 49
    --------
     11 20     ← Bring down next pair
 
 147| 1120      ← (2×7) = 14
     -1029      → 147×7 = 1029
    --------
        91 00     ← Bring down next pair
 
 1545| 9100      ← (2×77) = 154
      -7725      → 1545×5 = 7725
    --------
       1375

Answer: 0.78


Q5: Find the square root of each of the following correct to two decimal places:

i. \(3\frac{4}{5}\)

Step 1: Convert the mixed number into improper fraction
3 + 4/5 = (3×5 + 4)/5 = 19/5 = 3.8
Step 2: Now find √3.8 using the division method:

    1.949
  ____________
1| 3. 80 00 00
  -1          ← 1×1 = 1
  ------
   2 80       ← Bring down next pair
 
 29| 280      ← (2×1) = 2
    -261      → 29×9 = 261
    --------
      19 00       ← Bring down next pair
 
  384| 1900      ← (2×19) = 38
      -1536      → 384×4 = 1536
      --------
        364 00       ← Bring down next pair
 
  3889| 36400      ← (2×194) = 388
       -35001      → 3889×9 = 35001
        --------
         1399

Answer: 1.95

ii. \(6\frac{7}{8}\)

Step 1: Convert the mixed number into improper fraction
6 + 7/8 = (6×8 + 7)/8 = 55/8 = 6.875
Step 2: Now find √6.875 using the division method:

     2.621
  _______________
2| 6. 87 50 00
  -4           ← 2×2 = 4
  ------
   2 87       ← Bring down next pair
 
 46| 287      ← (2×2) = 4
    -276      → 46×6 = 276
    --------
      11 00       ← Bring down next pair
 
  522| 1100      ← (2×26) = 52
      -1044      → 522×2 = 1044
     --------
         56 00       ← Bring down next pair
 
 5241| 5600      ← (2×262) = 524
      -5241      → 5241×1 = 5241
    --------
        359

Answer: 2.62


Q6: For each of the following, find the least number that must be subtracted so that the resulting number is a perfect square.

i. 796

Step 1: Use the division method to find √796

   28
  _________
2| 7 96
  -4            ← 2×2 = 4
  ------
   3 96       ← Bring down next pair
 
 48| 396      ← (2×2) = 4
    -384      → 48×8 = 384
    --------
      12

Step 2: The remainder is 12
Step 3: Subtract remainder from 796
796 − 12 = 784
Answer: 12 must be subtracted. Perfect square = 784

ii. 1886

Step 1: Use the division method to find √1886

      43
   __________
4| 18 86
  -16           ← 4×4 = 16
  ------
    2 86       ← Bring down next pair
 
 83| 286      ← (4×2) = 8
    -249      → 83×3 = 249
    --------
      37 

Step 2: The remainder is 37
Step 3: Subtract remainder from 1886
1886 − 37 = 1849
Answer: 37 must be subtracted. Perfect square = 1849

iii. 23497

Step 1: Use the division method to find √23497

    153
  _____________
1| 2 34 97
  -1            ← 1×1 = 1
  ------
   1 34       ← Bring down next pair
 
 25| 134      ← (1×2) = 2
    -125      → 25×5 = 125
    --------
      997       ← Bring down next pair
 
 303| 997      ← (15×2) = 30
     -909      → 303×3 = 909
    --------
       88

Step 2: The remainder is 88
Step 3: Subtract remainder from 23497
23497 − 88 = 23409
Answer: 88 must be subtracted. Perfect square = 23436


Q7: For each of the following, find the least number that must be added so that the resulting number is a perfect square.

Use long division method to get the next square number greater than the given number. Then subtract the original number from that square.

i. 511

Step 1: Find square root of 511 using long division method

   22
  _______
2| 5 11
  -4          ← 2×2 = 4
  ------
   1 11       ← Bring down next pair
 
 42| 111      ← (2×2) = 2
     -84      → 42×2 = 84
    --------
      27

Step 2: Quotient is 22, remainder is 27
⇒ Next perfect square = (22+1)² = 23² = 529
⇒ Add = 529 − 511 = 18
Answer: 18 must be added. Perfect square = 529

ii. 7172

Step 1: Find square root of 7172 using long division method

    84
  _________
8| 71 72
  -64         ← 8×8 = 64
  ------
    7 72       ← Bring down next pair
 
164| 772      ← (8×2) = 16
    -656      → 164×4 = 656
    --------
     116

Step 2: Quotient is 84, remainder is 116
⇒ Next perfect square = (84+1)² = 85² = 7225
⇒ Add = 7225 − 7172 = 53
Answer: 53 must be added. Perfect square = 7225

iii. 55078

Step 1: Find square root of 55078 using long division method

    234
  _____________
2| 5 50 78
  -4         ← 2×2 = 4
  ------
   1 50       ← Bring down next pair
 
 43| 150      ← (2×2) = 4
    -129      → 43×3 = 129
    --------
      21 78       ← Bring down next pair
 
  464| 2178      ← (23×2) = 46
      -1856      → 464×4 = 1856
    --------
        322

Step 2: Quotient is 234, remainder is 322
⇒ Next perfect square = (234+1)² = 235² = 55225
⇒ Add = 55225 − 55078 = 147
Answer: 147 must be added. Perfect square = 55225


Q8: Find the square root of 7 correct to two decimal places; then use it to find the value of \(\sqrt{\frac{4+\sqrt7}{4-\sqrt7}}\) correct to three significant digits.

i. Find √7 correct to two decimal places

Step 1: Estimate √7 using the division method

    2.645
  ________
2| 7. 00 00
  -4               ← 2×2 = 4
  -------
   3 00       ← Bring down next pair
 
 46| 300      ← (2×2) = 4
    -276      → 46×6 = 276
    --------
      24 00       ← Bring down next pair
 
 524| 2400      ← (26×2) = 52
     -2096      → 524×4 = 2096
    --------
       304 00       ← Bring down next pair
 
 5285| 30400      ← (264×2) = 528
      -26425      → 5285×5 = 26425
      --------
        3975

So, √7 ≈ 2.645 (correct to two decimal places)
Answer: √7 ≈ 2.65

ii. Use √7 to evaluate: √[(4 + √7)/(4 − √7)] correct to 3 significant digits

Step 1: Use the identity:\[ \sqrt{\frac{(4+\sqrt7)\times(4+\sqrt7)}{(4-\sqrt7)\times(4+\sqrt7)}\ =\ \sqrt{\frac{{(4+\sqrt7)}^2}{16-7}}=\frac{4+\sqrt7}{3}}\ \]Substitute √7 ≈ 2.65:\[ \frac{4 + 2.65}{3} = \frac{6.65}{3} = 2.216\overline{6} \]Rounded to 3 significant digits:
Answer: 2.22


Q9: Find the value of \(\sqrt5\) correct to 2 decimal places; then use it to find the square root of \(\frac{3-\sqrt5}{3+\sqrt5}\) correct to 2 significant digits.

i. Find √5 correct to two decimal places

Step 1: Use division method to estimate √5

    2.236
  ________
2| 5. 00 00
  -4           → 2×2 = 4
  -------
   1 00       ← Bring down next pair
 
 42| 100      ← (2×2) = 4
     -84      → 42×2 = 84
    --------
      16 00       ← Bring down next pair
 
 443| 1600      ← (22×2) = 44
     -1329      → 443×3 = 1329
      --------
       271 00       ← Bring down next pair
 
 4466| 27100      ← (223×2) = 446
      -26796      → 4466×6 = 26796
      --------
         304

So, √5 ≈ 2.236 (correct to two decimal places)
Answer: √5 ≈ 2.24

ii. Evaluate: √[(3 − √5)/(3 + √5)] correct to 2 significant digits

Step 2: Use rationalization:\[ \sqrt{\frac{3 – \sqrt{5}}{3 + \sqrt{5}}} = \sqrt{\frac{(3 – \sqrt{5})^2}{(3 + \sqrt{5})(3 – \sqrt{5})}} = \sqrt{\frac{(3 – \sqrt{5})^2}{9 – 5}} = \sqrt{\frac{(3 – \sqrt{5})^2}{4}} = \frac{3 – \sqrt{5}}{2} \]Now substitute √5 ≈ 2.24:\[ \frac{3 – 2.24}{2} = \frac{0.76}{2} = 0.38 \]Rounded to 2 significant digits:
Answer: 0.38


Q10: Find the square root of:

i. \(\sqrt{\frac{1764}{2809}}\)

Step 1: Find √1764 using division method:

    42
  ________
4| 17 64
  -16           → 4×4 = 16
  -------
    1 64       ← Bring down next pair
 
 82| 164      ← (4×2) = 8
    -164      → 82×2 = 164
  -------
     0

⇒ √1764 = 42
Step 2: Find √2809 using division method:

    53
  ________
5| 28 09
  -25		→ 5×5 = 25
  -----
    3 09       ← Bring down next pair
 
103| 309      ← (5×2) = 10
    -309      → 103×3 = 309
  -------
      0

⇒ √2809 = 53\[ \sqrt{\frac{1764}{2809}} = \frac{√1764}{√2809} = \frac{42}{53} \]Answer: \(\frac{42}{53}\)

ii. \(\sqrt{\frac{507}{4107}}\)

Step 1: Simplify the fraction: \[ \frac{507}{4107} = \frac{507 ÷ 3}{4107 ÷ 3} = \frac{169}{1369} \]Step 2: Now find square roots:
√169 = 13

    37
  ________
3| 13 69
   -9		→ 3×3 = 9
  -----
    4 69       ← Bring down next pair
 
 67| 469      ← (3×2) = 6
    -469      → 67×7 = 469
  -------
      0

⇒ √1369 = 37\[ \sqrt{\frac{507}{4107}} = \sqrt{\frac{169}{1369}} = \frac{13}{37} \]Answer: \(\frac{13}{37}\)

iii. \(\sqrt{108 \times 2028}\)

Step 1: Multiply the numbers: \[ 108 × 2028 = 219024 \]Step 2: Find √219024 using division method:

      468
   ________
4| 21 90 24
  -16			→ 4×4 = 16
   -----
    5 90       ← Bring down next pair
 
86| 590      ← (4×2) = 8
   -516      → 86×6 = 516
    -------
     74 24       ← Bring down next pair
 
 928| 7424      ← (46×2) = 92
     -7424      → 928×8 = 7424
     -------
        0

⇒ √219024 = 468Answer: 468

iv. \(0.01 + \sqrt{0.0064}\)

Step 1: √0.0064 using division method:\[ \sqrt{0.0064} = 0.08 \]Step 2: Add to 0.01\[ 0.01 + 0.08 = 0.09 \]Answer: 0.09


Q11: Find the square root of 7.832 correct to:

i. 2 decimal places

Step 1: Use the division method to find √7.832
Group the digits in pairs from the decimal point:

   2.798
  _________
2| 7. 83 20
  -4         ← 2×2 = 4
  ------
   3 83       ← Bring down next pair
 
47| 383      ← (2×2) = 4
   -329      → 47×7 = 329
   -------
     54 20       ← Bring down next pair
 
549| 5420      ← (27×2) = 54
    -4941      → 549×9 = 4941
    -------
      479 00       ← Bring down next pair
 
5588| 47900      ← (279×2) = 558
     -44704      → 5588×8 = 44704
    -------
       3196

So, √7.832 ≈ 2.798 ≈ 2.80 (rounded to 2 decimal places)
Answer: 2.80

ii. 2 significant digits

From above, we found:
√7.832 ≈ 2.798…
Rounding 2.798 to 2 significant digits:

→ First two significant digits are “2.8”
Answer: 2.8


Q12: Find the least number which must be subtracted from 1205 so that the resulting number is a perfect square.

Step 1: Use the division method to find the square root of 1205.
We find the square root of 1205 using long division method:

      34
   _________
3| 12 05
   -9       ← 3×3 = 9
   ------
    3 05       ← Bring down next pair
 
64| 305      ← (3×2) = 6
   -256      → 64×4 = 256
   -------
     49

The quotient is 34 and remainder is 49.
So, √1205 is not a perfect square.
Step 2: Subtract 49 from 1205: \[ 1205 – 49 = 1156 = 34^2 \]Answer: 49 must be subtracted from 1205 to make it a perfect square.


Q13: Find the least number which must be added to 1205 so that the resulting number is a perfect square.

Step 1: Use the division method to find the square root of 1205.
We apply the long division method:

      34
   _________
3| 12 05
   -9       ← 3×3 = 9
   ------
    3 05       ← Bring down next pair
 
64| 305      ← (3×2) = 6
   -256      → 64×4 = 256
   -------
     49

The quotient is 34 and remainder is 49.
This tells us:
34² = 1156 and 35² = 1225
Step 2: Find the nearest perfect square greater than 1205: \[ 35^2 = 1225 \]Step 3: Subtract the original number from the next perfect square: \[ 1225 – 1205 = 20 \]Answer: 20 must be added to 1205 to make it a perfect square.


Q14: Find the least number which must be subtracted from 2037 so that the resulting number is a perfect square.

Step 1: Use long division method to find the square root of 2037.

      45
   _________
4| 20 37
 - 16         ← 4×4 = 16
 ------
    4 37       ← Bring down next pair
 
85| 437      ← (4×2) = 8
   -425      → 85×5 = 425
   -------
     12

Quotient = 45, remainder = 12
So, √2037 is not a perfect square.
Step 2: Subtract the remainder from the original number: \[ 2037 – 12 = 2025 = 45^2 \]Answer: 12 must be subtracted from 2037 to make it a perfect square.


Q15: Find the least number which must be added to 5483 so that the resulting number is a perfect square.

Step 1: Use long division method to find the square root of 5483.

    74
  _________
7| 54 83
 - 49           ← 7 × 7 = 49
 ------
    5 83       ← Bring down next pair
 
144| 583      ← (4×2) = 8
    -576      → 144×4 = 576
   -------
       7

Quotient = 74, remainder = 5
So, √5483 is not a perfect square.
Nearest perfect square greater than 5483 is: \[ 75^2 = 5625 \]Step 2: Subtract the original number from the next perfect square: \[ 5625 – 5483 = 142 \]Answer: 142 must be added to 5483 to make it a perfect square.


previous
next

Share the Post:

Leave a Comment

Your email address will not be published. Required fields are marked *

Related Posts​

  • Identities
    Step by Step solutions of Test Yourself Concise Mathematics ICSE Class-8 Maths chapter 12- Identities by Selina is provided.
  • Identities
    Step by Step solutions of Exercise- 12B Concise Mathematics ICSE Class-8 Maths chapter 12- Identities by Selina is provided.

Join Our Newsletter

Name
Email
The form has been submitted successfully!
There has been some error while submitting the form. Please verify all form fields again.

Scroll to Top