Exercise: 3-B
Q1: Multiple Choice Type
i. If \(\sqrt5=2.24\); the value of \(\sqrt{20}\) is
Step 1:
We know:
\[
20 = 4 \times 5 \Rightarrow \sqrt{20} = \sqrt{4 \times 5} = \sqrt{4} \times \sqrt{5} = 2 \times 2.24 = 4.48
\]Answer: b. 4.48
ii. If \(\sqrt{27.8}=5.27\), the value of \(\sqrt{2780}\) is:
Step 1:
\[
2780 = 27.8 \times 100 \Rightarrow \sqrt{2780} = \sqrt{27.8 \times 100} = \sqrt{27.8} \times \sqrt{100} = 5.27 \times 10 = 52.7
\]Answer: b. 52.7
iii. n is the least natural number that must be added to 23 so that the resulting number is a perfect square, the value of n is:
Step 1:
Let’s test perfect squares greater than 23:
25 − 23 = 2 (25 is a perfect square, 5² = 25)
Answer: b. 2
iv. n is the least natural number that must be subtracted from 23 so that the resulting number is a perfect square, the value of n is:
Step 1:
Let’s test perfect squares less than 23:
16 is the nearest square below 23 → 23 − 16 = 7
Answer: a. 7
Q2: Find square root of:
i. 4761
Step-by-step using division method:
69 _______ 6| 47 61 -36 ← 6 × 6 = 36 ----- 11 61 ← Bring down next pair 129| 1161 ← (2×6) = 12 -1161 → 129×9 = 1161 ----- 0
Answer: 69
ii. 7744
88
_______
8| 77 44
-64 ← 8×8 = 64
-----
13 44 ← Bring down next pair
168| 1344 ← (2×8) = 16
-1344 → 168×8 = 1344
-----
0
88 _______ 8| 77 44 -64 ← 8×8 = 64 ----- 13 44 ← Bring down next pair 168| 1344 ← (2×8) = 16 -1344 → 168×8 = 1344 ----- 0
Answer: 88
iii. 15129
123
________
1| 1 51 29
-1
------
0 51 ← Bring down next pair
22| 51 ← (2×1) = 2
-44 → 2×2 = 44
------
7 29 ← Bring down next pair
243| 729 ← (2×12) = 24
-729 → 243×3 = 729
------
0
123 ________ 1| 1 51 29 -1 ------ 0 51 ← Bring down next pair 22| 51 ← (2×1) = 2 -44 → 2×2 = 44 ------ 7 29 ← Bring down next pair 243| 729 ← (2×12) = 24 -729 → 243×3 = 729 ------ 0
Answer: 123
iv. 0.2916
Note: Group digits after decimal in pairs: 29|16
0.54 _________ 5| 0. 29 16 -0 25 ← 0×0 = 25 ------ 0. 04 16 ← Bring down next pair 104| 416 ← (2×0) = 0 -416 → 104×4 = 416 -------- 0
Answer: 0.54
v. 0.001225
Group digits: 00|12|25
0.035 ___________ 0| 00 | 12 | 25 -00 ------- 0 12 ← Bring down next pair 03| 12 ← (2×0) = 0 -9 → 3×3 = 9 -------- 3 25 ← Bring down next pair 65| 425 ← (2×3) = 6 -325 → 65×5 = 325 ------ 0
Answer: 0.035
vi. 0.023104
Group digits: 00|23|10|40
0.152 _____________ 1| 02 31 04 -1 -------- 1 31 ← Bring down next pair 25| 131 ← (2×1) = 2 -125 → 25×5 = 125 ----- 6 04 ← Bring down next pair 302| 604 ← (2×15) = 30 -604 → 302×2 = 604 ------ 0
Answer: 0.152
vii. 27.3529
Group: 27|35|29
5.23 ____________ 5| 27. 35 29 -25 ← 5×5 = 25 ------ 2 35 ← Bring down next pair 102| 235 ← (2×5) = 10 -204 → 102×2 = 204 -------- 31 29 ← Bring down next pair 1043| 3129 ← (2×52) = 104 -3129 → 1043×3 = 3129 ------- 0
Answer: 5.23
Q3: Find the square root:
i. 4.2025
Step-by-step: Group digits as: 04 | 20 | 25
2.05 ___________ 2| 04 20 25 -04 ← 2×2 = 4 ----- 0 20 ← Bring down next pair 40| 20 ← (2×2) = 4 -00 → 40×0 = 0 -------- 20 25 ← Bring down next pair 405| 2025 ← (2×20) = 40 -2025 → 405×5 = 2025 -------- 0
Answer: 2.05
ii. 531.7636
Step-by-step: Group digits as: 05 | 31 | 76 | 36
23.06 _______________ 2| 05 31. 76 36 - 4 ← 2×2 = 4 ------ 1 31 ← Bring down next pair 43| 131 ← (2×2) = 4 -129 → 43×3 = 129 -------- 2 76 ← Bring down next pair 460| 276 ← (2×23) = 46 -000 → 460×0 = 000 -------- 276 36 ← Bring down next pair 4606| 27636 ← (2×230) = 460 -27636 → 4606×6 = 4606 -------- 0
Answer: 23.06
iii. 0.007225
Step-by-step: Group digits as: 00 | 07 | 22 | 50
0.085 _______________ 0| 00. 00 72 25 -00 ------ 0 00 ← Bring down next pair 00| 000 ← (2×0) = 0 -000 → 00×0 = 0 -------- 0 72 ← Bring down next pair 08| 72 ← (2×0) = 0 -64 → 8×8 = 64 -------- 8 25 ← Bring down next pair 165| 825 ← (2×8) = 16 -825 → 165×5 = 825 -------- 0
Answer: 0.085
Q4: Find the square root of:
i. 245 correct to two places of decimal.
15.652 _______________ 1| 2 45. 00 00 00 -1 ← 1×1 = 1 ------- 1 45 ← Bring down next pair 25| 145 ← (2×1) = 2 -125 → 25×5 = 125 ------ 20 00 ← Bring down next pair 306| 2000 ← (2×15) = 30 -1836 → 306×6 = 1836 -------- 164 00 ← Bring down next pair 3125| 16400 ← (2×156) = 312 -15625 → 3125×5 = 15625 -------- 775 00 ← Bring down next pair 31302| 77500 ← (2×1565) = 3130 -62604 → 31302×2 = 62604 -------- 14896
Answer: 15.65
ii. 496 correct to three places of decimal.
22.2710 __________________ 2| 4 96 00 00 00 -4 ← 2×2 = 4 ------ 0 96 ← Bring down next pair 42| 96 ← (2×2) = 4 -84 → 42×2 = 84 -------- 12 00 ← Bring down next pair 442| 1200 ← (2×22) = 44 -884 → 442×2 = 884 -------- 316 00 ← Bring down next pair 4447| 31600 ← (2×222) = 444 31129 → 4447×7 = 31129 -------- 471 00 ← Bring down next pair 44541| 47100 ← (2×2227) = 4454 -44541 → 44541×1 = 44541 -------- 2559 00 ← Bring down next pair 445420| 255900 ← (2×22271) = 44542 -0 → 445420×0 = 0 -------- 255900
Answer: 22.271
iii. 82.6 correct to two places of decimal.
9.088 _______________ 9| 82. 60 00 00 -81 ← 9×9 = 81 ------ 1 60 ← Bring down next pair 180| 160 ← (2×9) = 18 -000 → 180×0 = 0 -------- 160 00 ← Bring down next pair 1808| 16000 ← (2×90) = 180 -14464 → 1808×8 = 14464 -------- 1536 00 ← Bring down next pair 18168| 153600 ← (2×908) = 1816 -145344 → 18168×8 = 145344 -------- 8256
Answer: 9.09
iv. 0.065 correct to three places of decimal.
0.2549 __________________ 0| 0. 06 50 00 00 -0 ------ 0 06 ← Bring down next pair 02| 6 ← (2×0) = 0 -4 → 2×2 = 4 ----- 2 50 ← Bring down next pair 45| 250 ← (2×2) = 4 -225 → 45×5 = 225 -------- 25 00 ← Bring down next pair 504| 2500 ← (2×25) = 50 -2016 → 504×4 = 2016 -------- 484 00 ← Bring down next pair 5089| 48400 ← (2×254) = 508 -45801 → 5089×9 = 45081 -------- 2599
Answer: 0.255
v. 5.2005 correct to two places of decimal.
2.280 _______________ 2| 5. 20 05 00 -4 ← 2×2 = 4 ------ 1 20 ← Bring down next pair 42| 120 ← (2×2) = 4 -84 → 42× = 84 -------- 36 05 ← Bring down next pair 448| 3605 ← (2×22) = 44 -3584 → 448×8 = 3584 -------- 21 00 ← Bring down next pair 4560| 2100 ← (2×228) = 456 -000 → 4560×0 = 0 -------- 2100
Answer: 2.28
vi. 0.602 correct to two places of decimal.
0.775 _______________ 0| 00. 60 20 00 - 0 ------ 0 60 ← Bring down next pair 07| 60 ← (2×0) = 0 -49 → 7×7 = 49 -------- 11 20 ← Bring down next pair 147| 1120 ← (2×7) = 14 -1029 → 147×7 = 1029 -------- 91 00 ← Bring down next pair 1545| 9100 ← (2×77) = 154 -7725 → 1545×5 = 7725 -------- 1375
Answer: 0.78
Q5: Find the square root of each of the following correct to two decimal places:
i. \(3\frac{4}{5}\)
Step 1: Convert the mixed number into improper fraction
3 + 4/5 = (3×5 + 4)/5 = 19/5 = 3.8
Step 2: Now find √3.8 using the division method:
1.949 ____________ 1| 3. 80 00 00 -1 ← 1×1 = 1 ------ 2 80 ← Bring down next pair 29| 280 ← (2×1) = 2 -261 → 29×9 = 261 -------- 19 00 ← Bring down next pair 384| 1900 ← (2×19) = 38 -1536 → 384×4 = 1536 -------- 364 00 ← Bring down next pair 3889| 36400 ← (2×194) = 388 -35001 → 3889×9 = 35001 -------- 1399
Answer: 1.95
ii. \(6\frac{7}{8}\)
Step 1: Convert the mixed number into improper fraction
6 + 7/8 = (6×8 + 7)/8 = 55/8 = 6.875
Step 2: Now find √6.875 using the division method:
2.621 _______________ 2| 6. 87 50 00 -4 ← 2×2 = 4 ------ 2 87 ← Bring down next pair 46| 287 ← (2×2) = 4 -276 → 46×6 = 276 -------- 11 00 ← Bring down next pair 522| 1100 ← (2×26) = 52 -1044 → 522×2 = 1044 -------- 56 00 ← Bring down next pair 5241| 5600 ← (2×262) = 524 -5241 → 5241×1 = 5241 -------- 359
Answer: 2.62
Q6: For each of the following, find the least number that must be subtracted so that the resulting number is a perfect square.
i. 796
Step 1: Use the division method to find √796
28 _________ 2| 7 96 -4 ← 2×2 = 4 ------ 3 96 ← Bring down next pair 48| 396 ← (2×2) = 4 -384 → 48×8 = 384 -------- 12
Step 2: The remainder is 12
Step 3: Subtract remainder from 796
796 − 12 = 784
Answer: 12 must be subtracted. Perfect square = 784
ii. 1886
Step 1: Use the division method to find √1886
43 __________ 4| 18 86 -16 ← 4×4 = 16 ------ 2 86 ← Bring down next pair 83| 286 ← (4×2) = 8 -249 → 83×3 = 249 -------- 37
Step 2: The remainder is 37
Step 3: Subtract remainder from 1886
1886 − 37 = 1849
Answer: 37 must be subtracted. Perfect square = 1849
iii. 23497
Step 1: Use the division method to find √23497
153 _____________ 1| 2 34 97 -1 ← 1×1 = 1 ------ 1 34 ← Bring down next pair 25| 134 ← (1×2) = 2 -125 → 25×5 = 125 -------- 997 ← Bring down next pair 303| 997 ← (15×2) = 30 -909 → 303×3 = 909 -------- 88
Step 2: The remainder is 88
Step 3: Subtract remainder from 23497
23497 − 88 = 23409
Answer: 88 must be subtracted. Perfect square = 23436
Q7: For each of the following, find the least number that must be added so that the resulting number is a perfect square.
Use long division method to get the next square number greater than the given number. Then subtract the original number from that square.
i. 511
Step 1: Find square root of 511 using long division method
22 _______ 2| 5 11 -4 ← 2×2 = 4 ------ 1 11 ← Bring down next pair 42| 111 ← (2×2) = 2 -84 → 42×2 = 84 -------- 27
Step 2: Quotient is 22, remainder is 27
⇒ Next perfect square = (22+1)² = 23² = 529
⇒ Add = 529 − 511 = 18
Answer: 18 must be added. Perfect square = 529
ii. 7172
Step 1: Find square root of 7172 using long division method
84 _________ 8| 71 72 -64 ← 8×8 = 64 ------ 7 72 ← Bring down next pair 164| 772 ← (8×2) = 16 -656 → 164×4 = 656 -------- 116
Step 2: Quotient is 84, remainder is 116
⇒ Next perfect square = (84+1)² = 85² = 7225
⇒ Add = 7225 − 7172 = 53
Answer: 53 must be added. Perfect square = 7225
iii. 55078
Step 1: Find square root of 55078 using long division method
234 _____________ 2| 5 50 78 -4 ← 2×2 = 4 ------ 1 50 ← Bring down next pair 43| 150 ← (2×2) = 4 -129 → 43×3 = 129 -------- 21 78 ← Bring down next pair 464| 2178 ← (23×2) = 46 -1856 → 464×4 = 1856 -------- 322
Step 2: Quotient is 234, remainder is 322
⇒ Next perfect square = (234+1)² = 235² = 55225
⇒ Add = 55225 − 55078 = 147
Answer: 147 must be added. Perfect square = 55225
Q8: Find the square root of 7 correct to two decimal places; then use it to find the value of \(\sqrt{\frac{4+\sqrt7}{4-\sqrt7}}\) correct to three significant digits.
i. Find √7 correct to two decimal places
Step 1: Estimate √7 using the division method
2.645 ________ 2| 7. 00 00 -4 ← 2×2 = 4 ------- 3 00 ← Bring down next pair 46| 300 ← (2×2) = 4 -276 → 46×6 = 276 -------- 24 00 ← Bring down next pair 524| 2400 ← (26×2) = 52 -2096 → 524×4 = 2096 -------- 304 00 ← Bring down next pair 5285| 30400 ← (264×2) = 528 -26425 → 5285×5 = 26425 -------- 3975
So, √7 ≈ 2.645 (correct to two decimal places)
Answer: √7 ≈ 2.65
ii. Use √7 to evaluate: √[(4 + √7)/(4 − √7)]
correct to 3 significant digits
Step 1: Use the identity:\[
\sqrt{\frac{(4+\sqrt7)\times(4+\sqrt7)}{(4-\sqrt7)\times(4+\sqrt7)}\ =\ \sqrt{\frac{{(4+\sqrt7)}^2}{16-7}}=\frac{4+\sqrt7}{3}}\
\]Substitute √7 ≈ 2.65:\[
\frac{4 + 2.65}{3} = \frac{6.65}{3} = 2.216\overline{6}
\]Rounded to 3 significant digits:
Answer: 2.22
Q9: Find the value of \(\sqrt5\) correct to 2 decimal places; then use it to find the square root of \(\frac{3-\sqrt5}{3+\sqrt5}\) correct to 2 significant digits.
i. Find √5 correct to two decimal places
Step 1: Use division method to estimate √5
2.236 ________ 2| 5. 00 00 -4 → 2×2 = 4 ------- 1 00 ← Bring down next pair 42| 100 ← (2×2) = 4 -84 → 42×2 = 84 -------- 16 00 ← Bring down next pair 443| 1600 ← (22×2) = 44 -1329 → 443×3 = 1329 -------- 271 00 ← Bring down next pair 4466| 27100 ← (223×2) = 446 -26796 → 4466×6 = 26796 -------- 304
So, √5 ≈ 2.236 (correct to two decimal places)
Answer: √5 ≈ 2.24
ii. Evaluate: √[(3 − √5)/(3 + √5)]
correct to 2 significant digits
Step 2: Use rationalization:\[
\sqrt{\frac{3 – \sqrt{5}}{3 + \sqrt{5}}}
= \sqrt{\frac{(3 – \sqrt{5})^2}{(3 + \sqrt{5})(3 – \sqrt{5})}}
= \sqrt{\frac{(3 – \sqrt{5})^2}{9 – 5}}
= \sqrt{\frac{(3 – \sqrt{5})^2}{4}}
= \frac{3 – \sqrt{5}}{2}
\]Now substitute √5 ≈ 2.24:\[
\frac{3 – 2.24}{2} = \frac{0.76}{2} = 0.38
\]Rounded to 2 significant digits:
Answer: 0.38
Q10: Find the square root of:
i. \(\sqrt{\frac{1764}{2809}}\)
Step 1: Find √1764 using division method:
42 ________ 4| 17 64 -16 → 4×4 = 16 ------- 1 64 ← Bring down next pair 82| 164 ← (4×2) = 8 -164 → 82×2 = 164 ------- 0
⇒ √1764 = 42
Step 2: Find √2809 using division method:
53 ________ 5| 28 09 -25 → 5×5 = 25 ----- 3 09 ← Bring down next pair 103| 309 ← (5×2) = 10 -309 → 103×3 = 309 ------- 0
⇒ √2809 = 53\[
\sqrt{\frac{1764}{2809}} = \frac{√1764}{√2809} = \frac{42}{53}
\]Answer: \(\frac{42}{53}\)
ii. \(\sqrt{\frac{507}{4107}}\)
Step 1: Simplify the fraction:
\[
\frac{507}{4107} = \frac{507 ÷ 3}{4107 ÷ 3} = \frac{169}{1369}
\]Step 2: Now find square roots:
√169 = 13
37 ________ 3| 13 69 -9 → 3×3 = 9 ----- 4 69 ← Bring down next pair 67| 469 ← (3×2) = 6 -469 → 67×7 = 469 ------- 0
⇒ √1369 = 37\[
\sqrt{\frac{507}{4107}} = \sqrt{\frac{169}{1369}} = \frac{13}{37}
\]Answer: \(\frac{13}{37}\)
iii. \(\sqrt{108 \times 2028}\)
Step 1: Multiply the numbers: \[ 108 × 2028 = 219024 \]Step 2: Find √219024 using division method:
468 ________ 4| 21 90 24 -16 → 4×4 = 16 ----- 5 90 ← Bring down next pair 86| 590 ← (4×2) = 8 -516 → 86×6 = 516 ------- 74 24 ← Bring down next pair 928| 7424 ← (46×2) = 92 -7424 → 928×8 = 7424 ------- 0
⇒ √219024 = 468Answer: 468
iv. \(0.01 + \sqrt{0.0064}\)
Step 1: √0.0064 using division method:\[
\sqrt{0.0064} = 0.08
\]Step 2: Add to 0.01\[
0.01 + 0.08 = 0.09
\]Answer: 0.09
Q11: Find the square root of 7.832 correct to:
i. 2 decimal places
Step 1: Use the division method to find √7.832
Group the digits in pairs from the decimal point:
2.798 _________ 2| 7. 83 20 -4 ← 2×2 = 4 ------ 3 83 ← Bring down next pair 47| 383 ← (2×2) = 4 -329 → 47×7 = 329 ------- 54 20 ← Bring down next pair 549| 5420 ← (27×2) = 54 -4941 → 549×9 = 4941 ------- 479 00 ← Bring down next pair 5588| 47900 ← (279×2) = 558 -44704 → 5588×8 = 44704 ------- 3196
So, √7.832 ≈ 2.798 ≈ 2.80 (rounded to 2 decimal places)
Answer: 2.80
ii. 2 significant digits
From above, we found:
√7.832 ≈ 2.798…
Rounding 2.798 to 2 significant digits:
→ First two significant digits are “2.8”
Answer: 2.8
Q12: Find the least number which must be subtracted from 1205 so that the resulting number is a perfect square.
Step 1: Use the division method to find the square root of 1205.
We find the square root of 1205 using long division method:
34 _________ 3| 12 05 -9 ← 3×3 = 9 ------ 3 05 ← Bring down next pair 64| 305 ← (3×2) = 6 -256 → 64×4 = 256 ------- 49
The quotient is 34 and remainder is 49.
So, √1205 is not a perfect square.
Step 2: Subtract 49 from 1205:
\[
1205 – 49 = 1156 = 34^2
\]Answer: 49 must be subtracted from 1205 to make it a perfect square.
Q13: Find the least number which must be added to 1205 so that the resulting number is a perfect square.
Step 1: Use the division method to find the square root of 1205.
We apply the long division method:
34 _________ 3| 12 05 -9 ← 3×3 = 9 ------ 3 05 ← Bring down next pair 64| 305 ← (3×2) = 6 -256 → 64×4 = 256 ------- 49
The quotient is 34 and remainder is 49.
This tells us:
34² = 1156 and 35² = 1225
Step 2: Find the nearest perfect square greater than 1205:
\[
35^2 = 1225
\]Step 3: Subtract the original number from the next perfect square:
\[
1225 – 1205 = 20
\]Answer: 20 must be added to 1205 to make it a perfect square.
Q14: Find the least number which must be subtracted from 2037 so that the resulting number is a perfect square.
Step 1: Use long division method to find the square root of 2037.
45 _________ 4| 20 37 - 16 ← 4×4 = 16 ------ 4 37 ← Bring down next pair 85| 437 ← (4×2) = 8 -425 → 85×5 = 425 ------- 12
Quotient = 45, remainder = 12
So, √2037 is not a perfect square.
Step 2: Subtract the remainder from the original number:
\[
2037 – 12 = 2025 = 45^2
\]Answer: 12 must be subtracted from 2037 to make it a perfect square.
Q15: Find the least number which must be added to 5483 so that the resulting number is a perfect square.
Step 1: Use long division method to find the square root of 5483.
74 _________ 7| 54 83 - 49 ← 7 × 7 = 49 ------ 5 83 ← Bring down next pair 144| 583 ← (4×2) = 8 -576 → 144×4 = 576 ------- 7
Quotient = 74, remainder = 5
So, √5483 is not a perfect square.
Nearest perfect square greater than 5483 is:
\[
75^2 = 5625
\]Step 2: Subtract the original number from the next perfect square:
\[
5625 – 5483 = 142
\]Answer: 142 must be added to 5483 to make it a perfect square.