Exercise: 3-B
Q1: Multiple Choice Type
i. If \(\sqrt5=2.24\); the value of \(\sqrt{20}\) is
Step 1:
We know:
\[
20 = 4 \times 5 \Rightarrow \sqrt{20} = \sqrt{4 \times 5} = \sqrt{4} \times \sqrt{5} = 2 \times 2.24 = 4.48
\]Answer: b. 4.48
ii. If \(\sqrt{27.8}=5.27\), the value of \(\sqrt{2780}\) is:
Step 1:
\[
2780 = 27.8 \times 100 \Rightarrow \sqrt{2780} = \sqrt{27.8 \times 100} = \sqrt{27.8} \times \sqrt{100} = 5.27 \times 10 = 52.7
\]Answer: b. 52.7
iii. n is the least natural number that must be added to 23 so that the resulting number is a perfect square, the value of n is:
Step 1:
Let’s test perfect squares greater than 23:
25 − 23 = 2 (25 is a perfect square, 5² = 25)
Answer: b. 2
iv. n is the least natural number that must be subtracted from 23 so that the resulting number is a perfect square, the value of n is:
Step 1:
Let’s test perfect squares less than 23:
16 is the nearest square below 23 → 23 − 16 = 7
Answer: a. 7
Q2: Find square root of:
i. 4761
Step-by-step using division method:
69
_______
6| 47 61
-36 ← 6 × 6 = 36
-----
11 61 ← Bring down next pair
129| 1161 ← (2×6) = 12
-1161 → 129×9 = 1161
-----
0
Answer: 69
ii. 7744
88
_______
8| 77 44
-64 ← 8×8 = 64
-----
13 44 ← Bring down next pair
168| 1344 ← (2×8) = 16
-1344 → 168×8 = 1344
-----
0
88
_______
8| 77 44
-64 ← 8×8 = 64
-----
13 44 ← Bring down next pair
168| 1344 ← (2×8) = 16
-1344 → 168×8 = 1344
-----
0
Answer: 88
iii. 15129
123
________
1| 1 51 29
-1
------
0 51 ← Bring down next pair
22| 51 ← (2×1) = 2
-44 → 2×2 = 44
------
7 29 ← Bring down next pair
243| 729 ← (2×12) = 24
-729 → 243×3 = 729
------
0
123
________
1| 1 51 29
-1
------
0 51 ← Bring down next pair
22| 51 ← (2×1) = 2
-44 → 2×2 = 44
------
7 29 ← Bring down next pair
243| 729 ← (2×12) = 24
-729 → 243×3 = 729
------
0
Answer: 123
iv. 0.2916
Note: Group digits after decimal in pairs: 29|16
0.54
_________
5| 0. 29 16
-0 25 ← 0×0 = 25
------
0. 04 16 ← Bring down next pair
104| 416 ← (2×0) = 0
-416 → 104×4 = 416
--------
0
Answer: 0.54
v. 0.001225
Group digits: 00|12|25
0.035
___________
0| 00 | 12 | 25
-00
-------
0 12 ← Bring down next pair
03| 12 ← (2×0) = 0
-9 → 3×3 = 9
--------
3 25 ← Bring down next pair
65| 425 ← (2×3) = 6
-325 → 65×5 = 325
------
0
Answer: 0.035
vi. 0.023104
Group digits: 00|23|10|40
0.152
_____________
1| 02 31 04
-1
--------
1 31 ← Bring down next pair
25| 131 ← (2×1) = 2
-125 → 25×5 = 125
-----
6 04 ← Bring down next pair
302| 604 ← (2×15) = 30
-604 → 302×2 = 604
------
0
Answer: 0.152
vii. 27.3529
Group: 27|35|29
5.23
____________
5| 27. 35 29
-25 ← 5×5 = 25
------
2 35 ← Bring down next pair
102| 235 ← (2×5) = 10
-204 → 102×2 = 204
--------
31 29 ← Bring down next pair
1043| 3129 ← (2×52) = 104
-3129 → 1043×3 = 3129
-------
0
Answer: 5.23
Q3: Find the square root:
i. 4.2025
Step-by-step: Group digits as: 04 | 20 | 25
2.05
___________
2| 04 20 25
-04 ← 2×2 = 4
-----
0 20 ← Bring down next pair
40| 20 ← (2×2) = 4
-00 → 40×0 = 0
--------
20 25 ← Bring down next pair
405| 2025 ← (2×20) = 40
-2025 → 405×5 = 2025
--------
0
Answer: 2.05
ii. 531.7636
Step-by-step: Group digits as: 05 | 31 | 76 | 36
23.06
_______________
2| 05 31. 76 36
- 4 ← 2×2 = 4
------
1 31 ← Bring down next pair
43| 131 ← (2×2) = 4
-129 → 43×3 = 129
--------
2 76 ← Bring down next pair
460| 276 ← (2×23) = 46
-000 → 460×0 = 000
--------
276 36 ← Bring down next pair
4606| 27636 ← (2×230) = 460
-27636 → 4606×6 = 4606
--------
0
Answer: 23.06
iii. 0.007225
Step-by-step: Group digits as: 00 | 07 | 22 | 50
0.085
_______________
0| 00. 00 72 25
-00
------
0 00 ← Bring down next pair
00| 000 ← (2×0) = 0
-000 → 00×0 = 0
--------
0 72 ← Bring down next pair
08| 72 ← (2×0) = 0
-64 → 8×8 = 64
--------
8 25 ← Bring down next pair
165| 825 ← (2×8) = 16
-825 → 165×5 = 825
--------
0
Answer: 0.085
Q4: Find the square root of:
i. 245 correct to two places of decimal.
15.652
_______________
1| 2 45. 00 00 00
-1 ← 1×1 = 1
-------
1 45 ← Bring down next pair
25| 145 ← (2×1) = 2
-125 → 25×5 = 125
------
20 00 ← Bring down next pair
306| 2000 ← (2×15) = 30
-1836 → 306×6 = 1836
--------
164 00 ← Bring down next pair
3125| 16400 ← (2×156) = 312
-15625 → 3125×5 = 15625
--------
775 00 ← Bring down next pair
31302| 77500 ← (2×1565) = 3130
-62604 → 31302×2 = 62604
--------
14896
Answer: 15.65
ii. 496 correct to three places of decimal.
22.2710
__________________
2| 4 96 00 00 00
-4 ← 2×2 = 4
------
0 96 ← Bring down next pair
42| 96 ← (2×2) = 4
-84 → 42×2 = 84
--------
12 00 ← Bring down next pair
442| 1200 ← (2×22) = 44
-884 → 442×2 = 884
--------
316 00 ← Bring down next pair
4447| 31600 ← (2×222) = 444
31129 → 4447×7 = 31129
--------
471 00 ← Bring down next pair
44541| 47100 ← (2×2227) = 4454
-44541 → 44541×1 = 44541
--------
2559 00 ← Bring down next pair
445420| 255900 ← (2×22271) = 44542
-0 → 445420×0 = 0
--------
255900
Answer: 22.271
iii. 82.6 correct to two places of decimal.
9.088
_______________
9| 82. 60 00 00
-81 ← 9×9 = 81
------
1 60 ← Bring down next pair
180| 160 ← (2×9) = 18
-000 → 180×0 = 0
--------
160 00 ← Bring down next pair
1808| 16000 ← (2×90) = 180
-14464 → 1808×8 = 14464
--------
1536 00 ← Bring down next pair
18168| 153600 ← (2×908) = 1816
-145344 → 18168×8 = 145344
--------
8256
Answer: 9.09
iv. 0.065 correct to three places of decimal.
0.2549
__________________
0| 0. 06 50 00 00
-0
------
0 06 ← Bring down next pair
02| 6 ← (2×0) = 0
-4 → 2×2 = 4
-----
2 50 ← Bring down next pair
45| 250 ← (2×2) = 4
-225 → 45×5 = 225
--------
25 00 ← Bring down next pair
504| 2500 ← (2×25) = 50
-2016 → 504×4 = 2016
--------
484 00 ← Bring down next pair
5089| 48400 ← (2×254) = 508
-45801 → 5089×9 = 45081
--------
2599
Answer: 0.255
v. 5.2005 correct to two places of decimal.
2.280
_______________
2| 5. 20 05 00
-4 ← 2×2 = 4
------
1 20 ← Bring down next pair
42| 120 ← (2×2) = 4
-84 → 42× = 84
--------
36 05 ← Bring down next pair
448| 3605 ← (2×22) = 44
-3584 → 448×8 = 3584
--------
21 00 ← Bring down next pair
4560| 2100 ← (2×228) = 456
-000 → 4560×0 = 0
--------
2100
Answer: 2.28
vi. 0.602 correct to two places of decimal.
0.775
_______________
0| 00. 60 20 00
- 0
------
0 60 ← Bring down next pair
07| 60 ← (2×0) = 0
-49 → 7×7 = 49
--------
11 20 ← Bring down next pair
147| 1120 ← (2×7) = 14
-1029 → 147×7 = 1029
--------
91 00 ← Bring down next pair
1545| 9100 ← (2×77) = 154
-7725 → 1545×5 = 7725
--------
1375
Answer: 0.78
Q5: Find the square root of each of the following correct to two decimal places:
i. \(3\frac{4}{5}\)
Step 1: Convert the mixed number into improper fraction
3 + 4/5 = (3×5 + 4)/5 = 19/5 = 3.8
Step 2: Now find √3.8 using the division method:
1.949
____________
1| 3. 80 00 00
-1 ← 1×1 = 1
------
2 80 ← Bring down next pair
29| 280 ← (2×1) = 2
-261 → 29×9 = 261
--------
19 00 ← Bring down next pair
384| 1900 ← (2×19) = 38
-1536 → 384×4 = 1536
--------
364 00 ← Bring down next pair
3889| 36400 ← (2×194) = 388
-35001 → 3889×9 = 35001
--------
1399
Answer: 1.95
ii. \(6\frac{7}{8}\)
Step 1: Convert the mixed number into improper fraction
6 + 7/8 = (6×8 + 7)/8 = 55/8 = 6.875
Step 2: Now find √6.875 using the division method:
2.621
_______________
2| 6. 87 50 00
-4 ← 2×2 = 4
------
2 87 ← Bring down next pair
46| 287 ← (2×2) = 4
-276 → 46×6 = 276
--------
11 00 ← Bring down next pair
522| 1100 ← (2×26) = 52
-1044 → 522×2 = 1044
--------
56 00 ← Bring down next pair
5241| 5600 ← (2×262) = 524
-5241 → 5241×1 = 5241
--------
359
Answer: 2.62
Q6: For each of the following, find the least number that must be subtracted so that the resulting number is a perfect square.
i. 796
Step 1: Use the division method to find √796
28
_________
2| 7 96
-4 ← 2×2 = 4
------
3 96 ← Bring down next pair
48| 396 ← (2×2) = 4
-384 → 48×8 = 384
--------
12
Step 2: The remainder is 12
Step 3: Subtract remainder from 796
796 − 12 = 784
Answer: 12 must be subtracted. Perfect square = 784
ii. 1886
Step 1: Use the division method to find √1886
43
__________
4| 18 86
-16 ← 4×4 = 16
------
2 86 ← Bring down next pair
83| 286 ← (4×2) = 8
-249 → 83×3 = 249
--------
37
Step 2: The remainder is 37
Step 3: Subtract remainder from 1886
1886 − 37 = 1849
Answer: 37 must be subtracted. Perfect square = 1849
iii. 23497
Step 1: Use the division method to find √23497
153
_____________
1| 2 34 97
-1 ← 1×1 = 1
------
1 34 ← Bring down next pair
25| 134 ← (1×2) = 2
-125 → 25×5 = 125
--------
997 ← Bring down next pair
303| 997 ← (15×2) = 30
-909 → 303×3 = 909
--------
88
Step 2: The remainder is 88
Step 3: Subtract remainder from 23497
23497 − 88 = 23409
Answer: 88 must be subtracted. Perfect square = 23436
Q7: For each of the following, find the least number that must be added so that the resulting number is a perfect square.
Use long division method to get the next square number greater than the given number. Then subtract the original number from that square.
i. 511
Step 1: Find square root of 511 using long division method
22
_______
2| 5 11
-4 ← 2×2 = 4
------
1 11 ← Bring down next pair
42| 111 ← (2×2) = 2
-84 → 42×2 = 84
--------
27
Step 2: Quotient is 22, remainder is 27
⇒ Next perfect square = (22+1)² = 23² = 529
⇒ Add = 529 − 511 = 18
Answer: 18 must be added. Perfect square = 529
ii. 7172
Step 1: Find square root of 7172 using long division method
84
_________
8| 71 72
-64 ← 8×8 = 64
------
7 72 ← Bring down next pair
164| 772 ← (8×2) = 16
-656 → 164×4 = 656
--------
116
Step 2: Quotient is 84, remainder is 116
⇒ Next perfect square = (84+1)² = 85² = 7225
⇒ Add = 7225 − 7172 = 53
Answer: 53 must be added. Perfect square = 7225
iii. 55078
Step 1: Find square root of 55078 using long division method
234
_____________
2| 5 50 78
-4 ← 2×2 = 4
------
1 50 ← Bring down next pair
43| 150 ← (2×2) = 4
-129 → 43×3 = 129
--------
21 78 ← Bring down next pair
464| 2178 ← (23×2) = 46
-1856 → 464×4 = 1856
--------
322
Step 2: Quotient is 234, remainder is 322
⇒ Next perfect square = (234+1)² = 235² = 55225
⇒ Add = 55225 − 55078 = 147
Answer: 147 must be added. Perfect square = 55225
Q8: Find the square root of 7 correct to two decimal places; then use it to find the value of \(\sqrt{\frac{4+\sqrt7}{4-\sqrt7}}\) correct to three significant digits.
i. Find √7 correct to two decimal places
Step 1: Estimate √7 using the division method
2.645
________
2| 7. 00 00
-4 ← 2×2 = 4
-------
3 00 ← Bring down next pair
46| 300 ← (2×2) = 4
-276 → 46×6 = 276
--------
24 00 ← Bring down next pair
524| 2400 ← (26×2) = 52
-2096 → 524×4 = 2096
--------
304 00 ← Bring down next pair
5285| 30400 ← (264×2) = 528
-26425 → 5285×5 = 26425
--------
3975
So, √7 ≈ 2.645 (correct to two decimal places)
Answer: √7 ≈ 2.65
ii. Use √7 to evaluate: √[(4 + √7)/(4 − √7)] correct to 3 significant digits
Step 1: Use the identity:\[
\sqrt{\frac{(4+\sqrt7)\times(4+\sqrt7)}{(4-\sqrt7)\times(4+\sqrt7)}\ =\ \sqrt{\frac{{(4+\sqrt7)}^2}{16-7}}=\frac{4+\sqrt7}{3}}\
\]Substitute √7 ≈ 2.65:\[
\frac{4 + 2.65}{3} = \frac{6.65}{3} = 2.216\overline{6}
\]Rounded to 3 significant digits:
Answer: 2.22
Q9: Find the value of \(\sqrt5\) correct to 2 decimal places; then use it to find the square root of \(\frac{3-\sqrt5}{3+\sqrt5}\) correct to 2 significant digits.
i. Find √5 correct to two decimal places
Step 1: Use division method to estimate √5
2.236
________
2| 5. 00 00
-4 → 2×2 = 4
-------
1 00 ← Bring down next pair
42| 100 ← (2×2) = 4
-84 → 42×2 = 84
--------
16 00 ← Bring down next pair
443| 1600 ← (22×2) = 44
-1329 → 443×3 = 1329
--------
271 00 ← Bring down next pair
4466| 27100 ← (223×2) = 446
-26796 → 4466×6 = 26796
--------
304
So, √5 ≈ 2.236 (correct to two decimal places)
Answer: √5 ≈ 2.24
ii. Evaluate: √[(3 − √5)/(3 + √5)] correct to 2 significant digits
Step 2: Use rationalization:\[
\sqrt{\frac{3 – \sqrt{5}}{3 + \sqrt{5}}}
= \sqrt{\frac{(3 – \sqrt{5})^2}{(3 + \sqrt{5})(3 – \sqrt{5})}}
= \sqrt{\frac{(3 – \sqrt{5})^2}{9 – 5}}
= \sqrt{\frac{(3 – \sqrt{5})^2}{4}}
= \frac{3 – \sqrt{5}}{2}
\]Now substitute √5 ≈ 2.24:\[
\frac{3 – 2.24}{2} = \frac{0.76}{2} = 0.38
\]Rounded to 2 significant digits:
Answer: 0.38
Q10: Find the square root of:
i. \(\sqrt{\frac{1764}{2809}}\)
Step 1: Find √1764 using division method:
42
________
4| 17 64
-16 → 4×4 = 16
-------
1 64 ← Bring down next pair
82| 164 ← (4×2) = 8
-164 → 82×2 = 164
-------
0
⇒ √1764 = 42
Step 2: Find √2809 using division method:
53
________
5| 28 09
-25 → 5×5 = 25
-----
3 09 ← Bring down next pair
103| 309 ← (5×2) = 10
-309 → 103×3 = 309
-------
0
⇒ √2809 = 53\[
\sqrt{\frac{1764}{2809}} = \frac{√1764}{√2809} = \frac{42}{53}
\]Answer: \(\frac{42}{53}\)
ii. \(\sqrt{\frac{507}{4107}}\)
Step 1: Simplify the fraction:
\[
\frac{507}{4107} = \frac{507 ÷ 3}{4107 ÷ 3} = \frac{169}{1369}
\]Step 2: Now find square roots:
√169 = 13
37
________
3| 13 69
-9 → 3×3 = 9
-----
4 69 ← Bring down next pair
67| 469 ← (3×2) = 6
-469 → 67×7 = 469
-------
0
⇒ √1369 = 37\[
\sqrt{\frac{507}{4107}} = \sqrt{\frac{169}{1369}} = \frac{13}{37}
\]Answer: \(\frac{13}{37}\)
iii. \(\sqrt{108 \times 2028}\)
Step 1: Multiply the numbers: \[ 108 × 2028 = 219024 \]Step 2: Find √219024 using division method:
468
________
4| 21 90 24
-16 → 4×4 = 16
-----
5 90 ← Bring down next pair
86| 590 ← (4×2) = 8
-516 → 86×6 = 516
-------
74 24 ← Bring down next pair
928| 7424 ← (46×2) = 92
-7424 → 928×8 = 7424
-------
0
⇒ √219024 = 468Answer: 468
iv. \(0.01 + \sqrt{0.0064}\)
Step 1: √0.0064 using division method:\[
\sqrt{0.0064} = 0.08
\]Step 2: Add to 0.01\[
0.01 + 0.08 = 0.09
\]Answer: 0.09
Q11: Find the square root of 7.832 correct to:
i. 2 decimal places
Step 1: Use the division method to find √7.832
Group the digits in pairs from the decimal point:
2.798
_________
2| 7. 83 20
-4 ← 2×2 = 4
------
3 83 ← Bring down next pair
47| 383 ← (2×2) = 4
-329 → 47×7 = 329
-------
54 20 ← Bring down next pair
549| 5420 ← (27×2) = 54
-4941 → 549×9 = 4941
-------
479 00 ← Bring down next pair
5588| 47900 ← (279×2) = 558
-44704 → 5588×8 = 44704
-------
3196
So, √7.832 ≈ 2.798 ≈ 2.80 (rounded to 2 decimal places)
Answer: 2.80
ii. 2 significant digits
From above, we found:
√7.832 ≈ 2.798…
Rounding 2.798 to 2 significant digits:
→ First two significant digits are “2.8”
Answer: 2.8
Q12: Find the least number which must be subtracted from 1205 so that the resulting number is a perfect square.
Step 1: Use the division method to find the square root of 1205.
We find the square root of 1205 using long division method:
34
_________
3| 12 05
-9 ← 3×3 = 9
------
3 05 ← Bring down next pair
64| 305 ← (3×2) = 6
-256 → 64×4 = 256
-------
49
The quotient is 34 and remainder is 49.
So, √1205 is not a perfect square.
Step 2: Subtract 49 from 1205:
\[
1205 – 49 = 1156 = 34^2
\]Answer: 49 must be subtracted from 1205 to make it a perfect square.
Q13: Find the least number which must be added to 1205 so that the resulting number is a perfect square.
Step 1: Use the division method to find the square root of 1205.
We apply the long division method:
34
_________
3| 12 05
-9 ← 3×3 = 9
------
3 05 ← Bring down next pair
64| 305 ← (3×2) = 6
-256 → 64×4 = 256
-------
49
The quotient is 34 and remainder is 49.
This tells us:
34² = 1156 and 35² = 1225
Step 2: Find the nearest perfect square greater than 1205:
\[
35^2 = 1225
\]Step 3: Subtract the original number from the next perfect square:
\[
1225 – 1205 = 20
\]Answer: 20 must be added to 1205 to make it a perfect square.
Q14: Find the least number which must be subtracted from 2037 so that the resulting number is a perfect square.
Step 1: Use long division method to find the square root of 2037.
45
_________
4| 20 37
- 16 ← 4×4 = 16
------
4 37 ← Bring down next pair
85| 437 ← (4×2) = 8
-425 → 85×5 = 425
-------
12
Quotient = 45, remainder = 12
So, √2037 is not a perfect square.
Step 2: Subtract the remainder from the original number:
\[
2037 – 12 = 2025 = 45^2
\]Answer: 12 must be subtracted from 2037 to make it a perfect square.
Q15: Find the least number which must be added to 5483 so that the resulting number is a perfect square.
Step 1: Use long division method to find the square root of 5483.
74
_________
7| 54 83
- 49 ← 7 × 7 = 49
------
5 83 ← Bring down next pair
144| 583 ← (4×2) = 8
-576 → 144×4 = 576
-------
7
Quotient = 74, remainder = 5
So, √5483 is not a perfect square.
Nearest perfect square greater than 5483 is:
\[
75^2 = 5625
\]Step 2: Subtract the original number from the next perfect square:
\[
5625 – 5483 = 142
\]Answer: 142 must be added to 5483 to make it a perfect square.






Leave a Comment