Squares and Square Roots, Cube and Cube Roots

squares and square roots, cube and cube roots class 8 rs aggarwal

Step by Step solutions of RS Aggarwal ICSE Class-8 Maths chapter 3- Squares and Square Roots, Cube and Cube Roots by Goyal Brothers Prakashan is provided

Table of Contents

Exercise: 3-D

Q1: Find the square root of:

i. 2.89

Step 1: Pair digits: (2)(89)
Step 2: Apply division method:

     1.7
    ------
 1 | 2.89
   - 1        ← 1 × 1 = 1
   ------
     1 89     ← bring down 89
     
 27 | 189     ← 2×1=2
     -189     → 27×7=189 
   ------
        0
  

Answer: √2.89 = 1.7

ii. 33.64

Step 1: Pair digits: (33)(64)
Step 2: Apply division method:

     5.8
    ------
5 |  33.64
   - 25        ← 5×5 = 25
   ------
      8 64     ← bring down 64
      
 108 | 864     ← 2×5 = 10 
      -864	   → 108×8 = 864 
   --------
         0
  

Answer: √33.64 = 5.8

iii. 156.25

Step 1: Pair digits: (156)(25)
Step 2: Apply division method:

     12.5
    ------
1 | 156.25
   -1         ← 1×1 = 1
   -------
     56			← bring down
     
 22 | 56		← 1×2= 2
     -44		→ 22×2 = 44
   -------
      1225      ← bring down
      
  245 | 1225     ← 2×12 = 24
       -1225     → 245×5 = 1225
   --------
         0
  

Answer: √156.25 = 12.5

iv. 75.69

Step 1: Pair digits: (75)(69)
Step 2: Apply division method:

     8.7
    ------
 8| 75.69
  - 64         ← 8×8 = 64
   ------
    11 69      ← bring down
    
 167 | 1169    ← 2×8 = 16
      -1169    → 167×7 = 1169 
   ---------
         0
  

Answer: √75.69 = 8.7

v. 5.4289

Step 1: Pair digits: (5)(42)(89)
Step 2: Apply division method:

     2.33
    -------
 2| 5.4289
  - 4         ← 2×2 = 4
   ------
    1 42      ← bring down
    
 43 | 142      ← 2×2 = 4
     -129	   → 43×3 = 129
   ------
       13 89   ← bring down
       
   463|1389    ← 2×23 = 46 
      -1389    → 463×3 = 1389
   -------
         0
  

Answer: √5.4289 = 2.33

vi. 18.1476

Step 1: Pair digits: (18)(14)(76)
Step 2: Apply division method:

     4.26
    -------
 4 | 18.1476
   - 16        ← 4×4 = 16
   ------
      2 14     ← bring down
      
   82|214      ← 2×4 = 8 
      164      → 82×2 = 164
   ------
         50 76   ← bring down
         
   846 | 5076      ← 2×42 = 84
        -5076      → 846×6 = 5076
       -------
         0
  

Answer: √18.1476 = 4.26


Q2: Evaluate \(\sqrt2\) up to two places of decimal.

Step 1: Pair the digits of 2 as: (2.00 00 00)
Since we want the answer up to 2 decimal places, we take 2 decimal pairs.
Step 2: Apply division method step-by-step:

      1.414
     ------
 1 | 2.000000
   - 1        ← 1 × 1 = 1
   ------
     1 00     ← bring down 00
     
  24 | 100    ← 2×1 = 2 
       -96    ⇒ 24×4 = 96 
     ------
         4 00    ← bring down next pair
       
  281 | 400   ← 2×14 = 28
       -281    ⇒ 281×1 = 281
    ------
        119 00     ← bring down 00
     
  2824 | 11900    ← 2×141 = 282 
        -11296     ⇒ 2824×4 = 11296
       ------
          604    ← bring down next pair
  

Step 3: Approximate value up to two decimal places = 1.414
Note: Since next digit is 4, we do not round up here, we take accurate long division cutoff.
Answer: \(\sqrt{2} = 1.41\)


Q3: Evaluate \(\sqrt{0.4}\) correct up to two places of decimal.

Step 1: Place decimal properly and convert 0.4 into suitable form:
We write: \(0.4 = 0.4000\) (add pairs of zeroes for precision)
Now pair the digits from the decimal point: (0.40)(00)(00)
Step 2: Apply square root division method:

       0.632
     --------
0 | 0.400000
  - 0             ← 0 × 0 = 0
   ------
      40          ← bring down first pair after decimal
      
 06 | 40       	← Try 0×2 = 0
     -36		⇒ 6×6 = 36
   ------
      4 00     ← bring down next pair
      
 123 | 400       ← 2×6 = 12
      -369		⇒ Try 123×3 = 369
     ------
        31 00	← bring down next pair
      
 1262 | 3100       ← 2×63 = 126
       -2524		⇒ 1262×2 = 2524
       ------
         576 		→ Stop here (only need up to 2 decimal places)
  

Step 3: Approximate value up to two decimal places = 0.632
Note: Since next digit is 2, we do not round up here, we take accurate long division cutoff.
Answer:\(\sqrt{0.4} \approx 0.63\)


Q4: Evaluate \(\sqrt{2.8}\) correct up to two places of decimal.

Step 1: Convert 2.8 into long division format:
We write: \(2.8 = 2.80 00\), grouping digits in pairs from the decimal.Step 2: Apply long division method:

       1.673
     --------
1 | 2.8000
   -1        ← 1×1 = 1
   ------
    1.80     ← bring down next pair
    
 26 | 180      ← 2×1 = 2
     -156   		⇒ Try 26×6 = 156
     ------
       24 00    ← bring down next pair
      
  327 | 2400    ← 2×16 = 32
       -2289	⇒ 327×7 = 12289
       ------
         111 00 ← bring down next pair
      
   3343 | 11100    ← 2×167 = 334
         -10029		⇒ 3343×3 = 100029
         ------
           1071 	→ ignore extra digits
  

Step 3: Approximate value up to two decimal places = 1.673
Note: Since next digit is 3, we do not round up here, we take accurate long division cutoff.
Answer:\(\sqrt{2.8} \approx 1.67\)


Q5: Find the length of each side of a square whose area is equal to the area of a rectangle of length 13.6 metres and breadth 3.4 metres.

Step 1: Find the area of the rectangle \[ \text{Area} = \text{Length} \times \text{Breadth} = 13.6 \times 3.4 \]Step 2: Multiply the numbers \[ 13.6 \times 3.4 = 46.24 \, \text{sq. metres} \]Step 3: Let the side of the square be \( x \) \[ x^2 = 46.24 \Rightarrow x = \sqrt{46.24} \]Now, find \( \sqrt{46.24} \) using the division method.
Step 4: Make digit pairs: (46)(24)(00)…

       6.8
     --------
6 | 46.24
   -36        ← 6×6 = 36
   ------
    10.24     ← bring down next pair
    
 128 | 1024      ← 2×6 = 12
     - 1024   		⇒ 128×8 = 1024
     ------
       0  

Step 5: The square root of 46.24 is 6.8
Answer: The length of each side of the square is 6.8 metres.


Q6; If \(\sqrt{1+\frac{27}{169}}=1+\frac{x}{13}\), find the value of x.

Step 1: Add the fractions inside the square root \[ \sqrt{1 + \frac{27}{169}} = \sqrt{\frac{169}{169} + \frac{27}{169}} = \sqrt{\frac{196}{169}} \]Step 2: Take square roots of numerator and denominator \[ \sqrt{\frac{196}{169}} = \frac{\sqrt{196}}{\sqrt{169}} = \frac{14}{13} \]So the equation becomes: \[ \frac{14}{13} = 1 + \frac{x}{13} \]Step 3: Subtract 1 from both sides \[ \frac{14}{13} – \frac{13}{13} = \frac{x}{13} \Rightarrow \frac{1}{13} = \frac{x}{13} \]Step 4: Equating the numerators \[ x = 1 \]Answer: \(x = 1\)


Q7: Find the square root of:

i. \(\sqrt{3\frac{13}{36}}\)

Step 1: Convert to improper fraction: \[ 3\frac{13}{36} = \frac{(3 \times 36) + 13}{36} = \frac{108 + 13}{36} = \frac{121}{36} \]Step 2: Take square root: \[ \sqrt{\frac{121}{36}} = \frac{\sqrt{121}}{\sqrt{36}} = \frac{11}{6} \]Answer: \(\sqrt{3\frac{13}{36}} = \frac{11}{6}\)

ii. \(\sqrt{4\frac{73}{324}}\)

Step 1: Convert to improper fraction: \[ 4\frac{73}{324} = \frac{(4 \times 324) + 73}{324} = \frac{1296 + 73}{324} = \frac{1369}{324} \]Step 2: Take square root: \[ \sqrt{\frac{1369}{324}} = \frac{\sqrt{1369}}{\sqrt{324}} = \frac{37}{18} \]Answer: \(\sqrt{4\frac{73}{324}} = \frac{37}{18}\)

iii. \(\sqrt{3\frac{942}{2209}}\)

Step 1: Convert to improper fraction: \[ 3\frac{942}{2209} = \frac{(3 \times 2209) + 942}{2209} = \frac{6627 + 942}{2209} = \frac{7569}{2209} \]Step 2: Take square root: \[ \sqrt{\frac{7569}{2209}} = \frac{\sqrt{7569}}{\sqrt{2209}} = \frac{87}{47} \]Answer: \(\sqrt{3\frac{942}{2209}} = \frac{87}{47}\)

iv. \(\sqrt{\frac{1089}{4624}}\)

Step 1: Take square root directly: \[ \sqrt{\frac{1089}{4624}} = \frac{\sqrt{1089}}{\sqrt{4624}} = \frac{33}{68} \]Answer: \(\sqrt{\frac{1089}{4624}} = \frac{33}{68}\)


Q8: Find the value of:

i. \(\frac{\sqrt{243}}{\sqrt{867}}\)

Step 1: Use the identity \[ \frac{\sqrt{243}}{\sqrt{867}} = \sqrt{\frac{243}{867}} \]Step 2: Simplify the fraction \[ \frac{243}{867} = \frac{81 \times 3}{289 \times 3} = \frac{81}{289} \]Step 3: Take square root \[ \sqrt{\frac{81}{289}} = \frac{\sqrt{81}}{\sqrt{289}} = \frac{9}{17} \]Answer: \(\frac{\sqrt{243}}{\sqrt{867}} = \frac{9}{17}\)

ii. \(\frac{\sqrt{1183}}{\sqrt{2023}}\)

Step 1: Use the identity \[ \frac{\sqrt{1183}}{\sqrt{2023}} = \sqrt{\frac{1183}{2023}} \]Step 2: Simplify the fraction \[ \frac{1183}{2023} = \frac{81 \times 7}{289 \times 7} = \frac{169}{289} \]Step 3: Take square root \[ \sqrt{\frac{169}{289}} = \frac{\sqrt{169}}{\sqrt{289}} = \frac{13}{17} \] Answer: \(\frac{\sqrt{1183}}{\sqrt{2023}} = \frac{13}{17}\)


Q9: Find the value of \(\sqrt{15625}\) and hence evaluate \(\sqrt{156.25}+\sqrt{1.5625}\).

Step 1: Use the division method to find \(\sqrt{15625}\)

       125
     --------
1 | 1 56 25
   -1        ← 1×1 = 1
   ------
    0 56     ← bring down next pair
    
 22 | 56      ← 2×1 = 2
     -44   		⇒ Try 22×2 = 44
     ------
       12 25    ← bring down next pair
      
  245 | 1225    ← 2×12 = 24
       -1225	⇒ 245×5 = 1225
       ------
           0

Step 2: Move decimal →
\(\sqrt{156.25} = \frac{\sqrt{15625}}{10} = \frac{125}{10} = 12.5\)
\(\sqrt{1.5625} = \frac{\sqrt{15625}}{100} = \frac{125}{100} = 1.25\)
Step 3: Add both values: \[ 12.5 + 1.25 = 13.75 \]Answer: \(\sqrt{156.25} + \sqrt{1.5625} = 13.75\)


Q10: Evaluate:

i. \(\sqrt{99} \times \sqrt{396}\)

Step 1: Use the property of square roots \[ \sqrt{99} \times \sqrt{396} = \sqrt{99 \times 396} \]Step 2: Multiply the numbers inside the square root \[ 99 \times 396 = 39204 \]Step 3: Now take the square root of 39204 \[ \sqrt{39204} = 198 \]Answer: \(\sqrt{99} \times \sqrt{396} = 198\)

ii. \(\sqrt{147} \times \sqrt{243}\)

Step 1: Use the property of square roots \[ \sqrt{147} \times \sqrt{243} = \sqrt{147 \times 243} \]Step 2: Multiply the numbers inside the square root \[ 147 \times 243 = 35721 \]Step 3: Now take the square root of 35721 \[ \sqrt{35721} = 189 \]Answer: \(\sqrt{147} \times \sqrt{243} = 189\)


Q11: Evaluate:

i. \(\sqrt{\frac{0.289}{0.00121}}\)

Step 1: Convert decimals to fractions \[ 0.289 = \frac{289}{1000}, \quad 0.00121 = \frac{121}{100000} \]Step 2: Divide the fractions \[ \frac{0.289}{0.00121} = \frac{\frac{289}{1000}}{\frac{121}{100000}} = \frac{289 \times 100000}{1000 \times 121} = \frac{28900000}{121000} \]Step 3: Simplify the fraction \[ \frac{28900000}{121000} = \frac{28900}{121} \]Step 4: Take the square root \[ \sqrt{\frac{28900}{121}} = \frac{\sqrt{28900}}{\sqrt{121}} = \frac{170}{11} \]Answer: \(\sqrt{\frac{0.289}{0.00121}} = \frac{170}{11}\)

ii. \(\sqrt{\frac{48.4}{0.289}}\)

Step 1: Convert decimals to fractions \[ 48.4 = \frac{484}{10}, \quad 0.289 = \frac{289}{1000} \]Step 2: Divide the fractions \[ \frac{48.4}{0.289} = \frac{\frac{484}{10}}{\frac{289}{1000}} = \frac{484 \times 1000}{10 \times 289} = \frac{484000}{2890} \]Step 3: Simplify the fraction \[ \frac{484000}{2890} = \frac{48400}{289} \] Step 4: Take the square root \[ \sqrt{\frac{48400}{289}} = \frac{\sqrt{48400}}{\sqrt{289}} = \frac{220}{17} \]Answer: \(\sqrt{\frac{48.4}{0.289}} = \frac{220}{17}\)

iii. \(\sqrt{0.01 + \sqrt{0.0064}}\)

Step 1: Find \(\sqrt{0.0064} = 0.08\)Step 2: Add 0.01 and 0.08 \[ 0.01 + 0.08 = 0.09 \]Step 3: Now, find the square root of 0.09 \[ \sqrt{0.09} = 0.3 \]Answer: \(\sqrt{0.01 + \sqrt{0.0064}} = 0.3\)

iv. \(\sqrt{0.01} + \sqrt{0.81} + \sqrt{1.21} + \sqrt{0.0009}\)

Step 1: Find each square root: \[ \sqrt{0.01} = 0.1, \quad \sqrt{0.81} = 0.9, \quad \sqrt{1.21} = 1.1, \quad \sqrt{0.0009} = 0.03 \]Step 2: Add all the values \[ 0.1 + 0.9 + 1.1 + 0.03 = 2.13 \]Answer: \(\sqrt{0.01} + \sqrt{0.81} + \sqrt{1.21} + \sqrt{0.0009} = 2.13\)

v. \(\sqrt{41-\sqrt{21+\sqrt{19-\sqrt9}}}\)

Step 1: Find \(\sqrt{9} = 3\) \[ 19 – 3 = 16 \quad \Rightarrow \quad \sqrt{16} = 4 \]Step 2: Now, find \(\sqrt{21 + 4} = \sqrt{25} = 5\) \[ 41 – 5 = 36 \quad \Rightarrow \quad \sqrt{36} = 6 \]Answer: \(\sqrt{41 – \sqrt{21 + \sqrt{19 – \sqrt{9}}}} = 6\)

vi. \(\sqrt{10+\sqrt{25+\sqrt{108+\sqrt{154+\sqrt{225}}}}}\)

Step 1: Find \(\sqrt{225} = 15\) \[ \sqrt{154 + 15} = \sqrt{169} = 13 \]Step 2: Find \(\sqrt{108 + 13} = \sqrt{121} = 11\) \[ \sqrt{25 + 11} = \sqrt{36} = 6 \]Step 3: Find \(\sqrt{10 + 6} = \sqrt{16} = 4\)Answer: \(\sqrt{10+\sqrt{25+\sqrt{108+\sqrt{154+\sqrt{225}}}}} = 4\)


Q12: Three-fifths of the square of a certain number is 126.15. Find the number.

Step 1: We are given the equation: \[ \frac{3}{5} \times x^2 = 126.15 \]Step 2: Multiply both sides by 5 to eliminate the fraction: \[ 3 \times x^2 = 126.15 \times 5 \]\[ 3 \times x^2 = 630.75 \]Step 3: Divide both sides by 3: \[ x^2 = \frac{630.75}{3} = 210.25 \]Step 4: Now take the square root of both sides: \[ x = \sqrt{210.25} = 14.5 \]Answer: The number is \( 14.5 \)


previous
next

Share the Post:

Leave a Comment

Your email address will not be published. Required fields are marked *

Related Posts​

  • Type casting in Java
    The process of converting the value of one data type to another data type is known as typecasting.
  • Identities
    Step by Step solutions of Test Yourself Concise Mathematics ICSE Class-8 Maths chapter 12- Identities by Selina is provided.

Join Our Newsletter

Name
Email
The form has been submitted successfully!
There has been some error while submitting the form. Please verify all form fields again.

Scroll to Top