Exercise: 3-D
Q1: Find the square root of:
i. 2.89
Step 1: Pair digits: (2)(89)
Step 2: Apply division method:
1.7 ------ 1 | 2.89 - 1 ← 1 × 1 = 1 ------ 1 89 ← bring down 89 27 | 189 ← 2×1=2 -189 → 27×7=189 ------ 0
Answer: √2.89 = 1.7
ii. 33.64
Step 1: Pair digits: (33)(64)
Step 2: Apply division method:
5.8 ------ 5 | 33.64 - 25 ← 5×5 = 25 ------ 8 64 ← bring down 64 108 | 864 ← 2×5 = 10 -864 → 108×8 = 864 -------- 0
Answer: √33.64 = 5.8
iii. 156.25
Step 1: Pair digits: (156)(25)
Step 2: Apply division method:
12.5 ------ 1 | 156.25 -1 ← 1×1 = 1 ------- 56 ← bring down 22 | 56 ← 1×2= 2 -44 → 22×2 = 44 ------- 1225 ← bring down 245 | 1225 ← 2×12 = 24 -1225 → 245×5 = 1225 -------- 0
Answer: √156.25 = 12.5
iv. 75.69
Step 1: Pair digits: (75)(69)
Step 2: Apply division method:
8.7 ------ 8| 75.69 - 64 ← 8×8 = 64 ------ 11 69 ← bring down 167 | 1169 ← 2×8 = 16 -1169 → 167×7 = 1169 --------- 0
Answer: √75.69 = 8.7
v. 5.4289
Step 1: Pair digits: (5)(42)(89)
Step 2: Apply division method:
2.33 ------- 2| 5.4289 - 4 ← 2×2 = 4 ------ 1 42 ← bring down 43 | 142 ← 2×2 = 4 -129 → 43×3 = 129 ------ 13 89 ← bring down 463|1389 ← 2×23 = 46 -1389 → 463×3 = 1389 ------- 0
Answer: √5.4289 = 2.33
vi. 18.1476
Step 1: Pair digits: (18)(14)(76)
Step 2: Apply division method:
4.26 ------- 4 | 18.1476 - 16 ← 4×4 = 16 ------ 2 14 ← bring down 82|214 ← 2×4 = 8 164 → 82×2 = 164 ------ 50 76 ← bring down 846 | 5076 ← 2×42 = 84 -5076 → 846×6 = 5076 ------- 0
Answer: √18.1476 = 4.26
Q2: Evaluate \(\sqrt2\) up to two places of decimal.
Step 1: Pair the digits of 2 as: (2.00 00 00)
Since we want the answer up to 2 decimal places, we take 2 decimal pairs.
Step 2: Apply division method step-by-step:
1.414 ------ 1 | 2.000000 - 1 ← 1 × 1 = 1 ------ 1 00 ← bring down 00 24 | 100 ← 2×1 = 2 -96 ⇒ 24×4 = 96 ------ 4 00 ← bring down next pair 281 | 400 ← 2×14 = 28 -281 ⇒ 281×1 = 281 ------ 119 00 ← bring down 00 2824 | 11900 ← 2×141 = 282 -11296 ⇒ 2824×4 = 11296 ------ 604 ← bring down next pair
Step 3: Approximate value up to two decimal places = 1.414
Note: Since next digit is 4, we do not round up here, we take accurate long division cutoff.
Answer: \(\sqrt{2} = 1.41\)
Q3: Evaluate \(\sqrt{0.4}\) correct up to two places of decimal.
Step 1: Place decimal properly and convert 0.4 into suitable form:
We write: \(0.4 = 0.4000\) (add pairs of zeroes for precision)
Now pair the digits from the decimal point: (0.40)(00)(00)
Step 2: Apply square root division method:
0.632 -------- 0 | 0.400000 - 0 ← 0 × 0 = 0 ------ 40 ← bring down first pair after decimal 06 | 40 ← Try 0×2 = 0 -36 ⇒ 6×6 = 36 ------ 4 00 ← bring down next pair 123 | 400 ← 2×6 = 12 -369 ⇒ Try 123×3 = 369 ------ 31 00 ← bring down next pair 1262 | 3100 ← 2×63 = 126 -2524 ⇒ 1262×2 = 2524 ------ 576 → Stop here (only need up to 2 decimal places)
Step 3: Approximate value up to two decimal places = 0.632
Note: Since next digit is 2, we do not round up here, we take accurate long division cutoff.
Answer:\(\sqrt{0.4} \approx 0.63\)
Q4: Evaluate \(\sqrt{2.8}\) correct up to two places of decimal.
Step 1: Convert 2.8 into long division format:
We write: \(2.8 = 2.80 00\), grouping digits in pairs from the decimal.Step 2: Apply long division method:
1.673 -------- 1 | 2.8000 -1 ← 1×1 = 1 ------ 1.80 ← bring down next pair 26 | 180 ← 2×1 = 2 -156 ⇒ Try 26×6 = 156 ------ 24 00 ← bring down next pair 327 | 2400 ← 2×16 = 32 -2289 ⇒ 327×7 = 12289 ------ 111 00 ← bring down next pair 3343 | 11100 ← 2×167 = 334 -10029 ⇒ 3343×3 = 100029 ------ 1071 → ignore extra digits
Step 3: Approximate value up to two decimal places = 1.673
Note: Since next digit is 3, we do not round up here, we take accurate long division cutoff.
Answer:\(\sqrt{2.8} \approx 1.67\)
Q5: Find the length of each side of a square whose area is equal to the area of a rectangle of length 13.6 metres and breadth 3.4 metres.
Step 1: Find the area of the rectangle
\[
\text{Area} = \text{Length} \times \text{Breadth} = 13.6 \times 3.4
\]Step 2: Multiply the numbers
\[
13.6 \times 3.4 = 46.24 \, \text{sq. metres}
\]Step 3: Let the side of the square be \( x \)
\[
x^2 = 46.24
\Rightarrow x = \sqrt{46.24}
\]Now, find \( \sqrt{46.24} \) using the division method.
Step 4: Make digit pairs: (46)(24)(00)…
6.8 -------- 6 | 46.24 -36 ← 6×6 = 36 ------ 10.24 ← bring down next pair 128 | 1024 ← 2×6 = 12 - 1024 ⇒ 128×8 = 1024 ------ 0
Step 5: The square root of 46.24 is 6.8
Answer: The length of each side of the square is 6.8 metres.
Q6; If \(\sqrt{1+\frac{27}{169}}=1+\frac{x}{13}\), find the value of x.
Step 1: Add the fractions inside the square root
\[
\sqrt{1 + \frac{27}{169}} = \sqrt{\frac{169}{169} + \frac{27}{169}} = \sqrt{\frac{196}{169}}
\]Step 2: Take square roots of numerator and denominator
\[
\sqrt{\frac{196}{169}} = \frac{\sqrt{196}}{\sqrt{169}} = \frac{14}{13}
\]So the equation becomes:
\[
\frac{14}{13} = 1 + \frac{x}{13}
\]Step 3: Subtract 1 from both sides
\[
\frac{14}{13} – \frac{13}{13} = \frac{x}{13}
\Rightarrow \frac{1}{13} = \frac{x}{13}
\]Step 4: Equating the numerators
\[
x = 1
\]Answer: \(x = 1\)
Q7: Find the square root of:
i. \(\sqrt{3\frac{13}{36}}\)
Step 1: Convert to improper fraction:
\[
3\frac{13}{36} = \frac{(3 \times 36) + 13}{36} = \frac{108 + 13}{36} = \frac{121}{36}
\]Step 2: Take square root:
\[
\sqrt{\frac{121}{36}} = \frac{\sqrt{121}}{\sqrt{36}} = \frac{11}{6}
\]Answer: \(\sqrt{3\frac{13}{36}} = \frac{11}{6}\)
ii. \(\sqrt{4\frac{73}{324}}\)
Step 1: Convert to improper fraction:
\[
4\frac{73}{324} = \frac{(4 \times 324) + 73}{324} = \frac{1296 + 73}{324} = \frac{1369}{324}
\]Step 2: Take square root:
\[
\sqrt{\frac{1369}{324}} = \frac{\sqrt{1369}}{\sqrt{324}} = \frac{37}{18}
\]Answer: \(\sqrt{4\frac{73}{324}} = \frac{37}{18}\)
iii. \(\sqrt{3\frac{942}{2209}}\)
Step 1: Convert to improper fraction:
\[
3\frac{942}{2209} = \frac{(3 \times 2209) + 942}{2209} = \frac{6627 + 942}{2209} = \frac{7569}{2209}
\]Step 2: Take square root:
\[
\sqrt{\frac{7569}{2209}} = \frac{\sqrt{7569}}{\sqrt{2209}} = \frac{87}{47}
\]Answer: \(\sqrt{3\frac{942}{2209}} = \frac{87}{47}\)
iv. \(\sqrt{\frac{1089}{4624}}\)
Step 1: Take square root directly:
\[
\sqrt{\frac{1089}{4624}} = \frac{\sqrt{1089}}{\sqrt{4624}} = \frac{33}{68}
\]Answer: \(\sqrt{\frac{1089}{4624}} = \frac{33}{68}\)
Q8: Find the value of:
i. \(\frac{\sqrt{243}}{\sqrt{867}}\)
Step 1: Use the identity
\[
\frac{\sqrt{243}}{\sqrt{867}} = \sqrt{\frac{243}{867}}
\]Step 2: Simplify the fraction
\[
\frac{243}{867} = \frac{81 \times 3}{289 \times 3} = \frac{81}{289}
\]Step 3: Take square root
\[
\sqrt{\frac{81}{289}} = \frac{\sqrt{81}}{\sqrt{289}} = \frac{9}{17}
\]Answer: \(\frac{\sqrt{243}}{\sqrt{867}} = \frac{9}{17}\)
ii. \(\frac{\sqrt{1183}}{\sqrt{2023}}\)
Step 1: Use the identity
\[
\frac{\sqrt{1183}}{\sqrt{2023}} = \sqrt{\frac{1183}{2023}}
\]Step 2: Simplify the fraction
\[
\frac{1183}{2023} = \frac{81 \times 7}{289 \times 7} = \frac{169}{289}
\]Step 3: Take square root
\[
\sqrt{\frac{169}{289}} = \frac{\sqrt{169}}{\sqrt{289}} = \frac{13}{17}
\]
Answer: \(\frac{\sqrt{1183}}{\sqrt{2023}} = \frac{13}{17}\)
Q9: Find the value of \(\sqrt{15625}\) and hence evaluate \(\sqrt{156.25}+\sqrt{1.5625}\).
Step 1: Use the division method to find \(\sqrt{15625}\)
125 -------- 1 | 1 56 25 -1 ← 1×1 = 1 ------ 0 56 ← bring down next pair 22 | 56 ← 2×1 = 2 -44 ⇒ Try 22×2 = 44 ------ 12 25 ← bring down next pair 245 | 1225 ← 2×12 = 24 -1225 ⇒ 245×5 = 1225 ------ 0
Step 2: Move decimal →
\(\sqrt{156.25} = \frac{\sqrt{15625}}{10} = \frac{125}{10} = 12.5\)
\(\sqrt{1.5625} = \frac{\sqrt{15625}}{100} = \frac{125}{100} = 1.25\)
Step 3: Add both values:
\[
12.5 + 1.25 = 13.75
\]Answer: \(\sqrt{156.25} + \sqrt{1.5625} = 13.75\)
Q10: Evaluate:
i. \(\sqrt{99} \times \sqrt{396}\)
Step 1: Use the property of square roots
\[
\sqrt{99} \times \sqrt{396} = \sqrt{99 \times 396}
\]Step 2: Multiply the numbers inside the square root
\[
99 \times 396 = 39204
\]Step 3: Now take the square root of 39204
\[
\sqrt{39204} = 198
\]Answer: \(\sqrt{99} \times \sqrt{396} = 198\)
ii. \(\sqrt{147} \times \sqrt{243}\)
Step 1: Use the property of square roots
\[
\sqrt{147} \times \sqrt{243} = \sqrt{147 \times 243}
\]Step 2: Multiply the numbers inside the square root
\[
147 \times 243 = 35721
\]Step 3: Now take the square root of 35721
\[
\sqrt{35721} = 189
\]Answer: \(\sqrt{147} \times \sqrt{243} = 189\)
Q11: Evaluate:
i. \(\sqrt{\frac{0.289}{0.00121}}\)
Step 1: Convert decimals to fractions
\[
0.289 = \frac{289}{1000}, \quad 0.00121 = \frac{121}{100000}
\]Step 2: Divide the fractions
\[
\frac{0.289}{0.00121} = \frac{\frac{289}{1000}}{\frac{121}{100000}} = \frac{289 \times 100000}{1000 \times 121} = \frac{28900000}{121000}
\]Step 3: Simplify the fraction
\[
\frac{28900000}{121000} = \frac{28900}{121}
\]Step 4: Take the square root
\[
\sqrt{\frac{28900}{121}} = \frac{\sqrt{28900}}{\sqrt{121}} = \frac{170}{11}
\]Answer: \(\sqrt{\frac{0.289}{0.00121}} = \frac{170}{11}\)
ii. \(\sqrt{\frac{48.4}{0.289}}\)
Step 1: Convert decimals to fractions
\[
48.4 = \frac{484}{10}, \quad 0.289 = \frac{289}{1000}
\]Step 2: Divide the fractions
\[
\frac{48.4}{0.289} = \frac{\frac{484}{10}}{\frac{289}{1000}} = \frac{484 \times 1000}{10 \times 289} = \frac{484000}{2890}
\]Step 3: Simplify the fraction
\[
\frac{484000}{2890} = \frac{48400}{289}
\]
Step 4: Take the square root
\[
\sqrt{\frac{48400}{289}} = \frac{\sqrt{48400}}{\sqrt{289}} = \frac{220}{17}
\]Answer: \(\sqrt{\frac{48.4}{0.289}} = \frac{220}{17}\)
iii. \(\sqrt{0.01 + \sqrt{0.0064}}\)
Step 1: Find \(\sqrt{0.0064} = 0.08\)Step 2: Add 0.01 and 0.08
\[
0.01 + 0.08 = 0.09
\]Step 3: Now, find the square root of 0.09
\[
\sqrt{0.09} = 0.3
\]Answer: \(\sqrt{0.01 + \sqrt{0.0064}} = 0.3\)
iv. \(\sqrt{0.01} + \sqrt{0.81} + \sqrt{1.21} + \sqrt{0.0009}\)
Step 1: Find each square root:
\[
\sqrt{0.01} = 0.1, \quad \sqrt{0.81} = 0.9, \quad \sqrt{1.21} = 1.1, \quad \sqrt{0.0009} = 0.03
\]Step 2: Add all the values
\[
0.1 + 0.9 + 1.1 + 0.03 = 2.13
\]Answer: \(\sqrt{0.01} + \sqrt{0.81} + \sqrt{1.21} + \sqrt{0.0009} = 2.13\)
v. \(\sqrt{41-\sqrt{21+\sqrt{19-\sqrt9}}}\)
Step 1: Find \(\sqrt{9} = 3\)
\[
19 – 3 = 16 \quad \Rightarrow \quad \sqrt{16} = 4
\]Step 2: Now, find \(\sqrt{21 + 4} = \sqrt{25} = 5\)
\[
41 – 5 = 36 \quad \Rightarrow \quad \sqrt{36} = 6
\]Answer: \(\sqrt{41 – \sqrt{21 + \sqrt{19 – \sqrt{9}}}} = 6\)
vi. \(\sqrt{10+\sqrt{25+\sqrt{108+\sqrt{154+\sqrt{225}}}}}\)
Step 1: Find \(\sqrt{225} = 15\)
\[
\sqrt{154 + 15} = \sqrt{169} = 13
\]Step 2: Find \(\sqrt{108 + 13} = \sqrt{121} = 11\)
\[
\sqrt{25 + 11} = \sqrt{36} = 6
\]Step 3: Find \(\sqrt{10 + 6} = \sqrt{16} = 4\)Answer: \(\sqrt{10+\sqrt{25+\sqrt{108+\sqrt{154+\sqrt{225}}}}} = 4\)
Q12: Three-fifths of the square of a certain number is 126.15. Find the number.
Step 1: We are given the equation:
\[
\frac{3}{5} \times x^2 = 126.15
\]Step 2: Multiply both sides by 5 to eliminate the fraction:
\[
3 \times x^2 = 126.15 \times 5
\]\[
3 \times x^2 = 630.75
\]Step 3: Divide both sides by 3:
\[
x^2 = \frac{630.75}{3} = 210.25
\]Step 4: Now take the square root of both sides:
\[
x = \sqrt{210.25} = 14.5
\]Answer: The number is \( 14.5 \)