Exercise: 4-H
Q1: Without actual division, show that each of the rational numbers given below is expressible as a terminating decimal:
Step: A rational number \(\frac{p}{q}\) is expressible as a terminating decimal if the denominator \(q\) has no prime factor other than 2 and/or 5, i.e., the denominator must be of the form \(2^m \times 5^n\), where \(m, n\) are non-negative integers.
i. \(\frac{11}{16}\)
Step 1: Prime factorization of 16
\[
16 = 2^4
\]
Only prime factor is 2 → Terminating
Answer: \(\frac{11}{16}\) is a terminating decimal.
ii. \(\frac{17}{20}\)
Step 1: Prime factorization of 20
\[
20 = 2^2 \times 5
\]
Only prime factors are 2 and 5 → Terminating
Answer: \(\frac{17}{20}\) is a terminating decimal.
iii. \(\frac{44}{125}\)
Step 1: Prime factorization of 125
\[
125 = 5^3
\]
Only prime factor is 5 → Terminating
Answer: \(\frac{44}{125}\) is a terminating decimal.
iv. \(\frac{9}{80}\)
Step 1: Prime factorization of 80
\[
80 = 2^4 \times 5
\]
Only prime factors are 2 and 5 → Terminating
Answer: \(\frac{9}{80}\) is a terminating decimal.
v. \(\frac{123}{200}\)
Step 1: Prime factorization of 200
\[
200 = 2^3 \times 5^2
\]
Only prime factors are 2 and 5 → Terminating
Answer: \(\frac{123}{200}\) is a terminating decimal.
vi. \(\frac{129}{320}\)
Step 1: Prime factorization of 320
\[
320 = 2^6 \times 5
\]
Only prime factors are 2 and 5 → Terminating
Answer: \(\frac{129}{320}\) is a terminating decimal.
vii. \(\frac{431}{500}\)
Step 1: Prime factorization of 500
\[
500 = 2^2 \times 5^3
\]
Only prime factors are 2 and 5 → Terminating
Answer: \(\frac{431}{500}\) is a terminating decimal.
viii. \(\frac{807}{1250}\)
Step 1: Prime factorization of 1250
\[
1250 = 2 \times 5^4
\]
Only prime factors are 2 and 5 → Terminating
Answer: \(\frac{807}{1250}\) is a terminating decimal.
Q2: By actual division, express each of the following rational numbers as a terminating decimal:
i. \(\frac{11}{8}\)
1.375 _______ 8 | 11.000 - 8 ----- 30 - 24 ----- 60 - 56 ----- 40 - 40 ----- 0
Answer: 1.375
ii. \(\frac{23}{16}\)
1.4375 ________ 16 | 23.0000 -16 ---- 70 - 64 ---- 60 - 48 ---- 120 -112 ---- 80 - 80 ---- 0
Answer: 1.4375
iii. \(\frac{76}{125}\)
0.608 _______ 125 | 76.000 -0 ----- 760 - 750 ----- 100 - 000 ----- 1000 - 1000 ---- 0
Answer: 0.608
iv. \(\frac{103}{40}\)
2.575 _______ 40 | 103.000 -80 ----- 230 -200 ----- 300 - 280 ----- 200 - 200 ----- 0
Answer: 2.575
v. \(\frac{17}{80}\)
0.2125 _______ 80 | 17.0000 - 0 ----- 170 -160 ----- 100 - 80 ----- 200 - 160 ----- 400 - 400 ----- 0
Answer: 0.2125
vi. \(\frac{2}{25}\)
0.08 ______ 25 | 2.00 - 0 ---- 200 - 200 ---- 0
Answer: 0.08
vii. \(\frac{1}{125}\)
0.008 _______ 125 | 1.000 - 0 ---- 100 - 000 ---- 1000 - 1000 ---- 0
Answer: 0.008
viii. \(\frac{309}{1250}\)
0.2472 __________ 1250 | 309.0000 -0 ----- 3090 - 2500 ----- 5900 - 5000 ----- 9000 - 8750 ----- 2500 - 2500 ----- 0
Answer: 0.2472
Q3: Without actual division, show that each of the rational numbers given below is expressible as a repeating decimal:
i. \(\frac{23}{24}\)
Step 1: Prime factorisation of denominator: \(24 = 2^3 \times 3\)
Step 2: The denominator contains 3 (a prime other than 2 or 5).
Answer: Repeating decimal
ii. \(\frac{79}{30}\)
Step 1: Prime factorisation of 30 = \(2 \times 3 \times 5\)
Step 2: The denominator contains 3 (other than 2, 5).
Answer: Repeating decimal
iii. \(\frac{100}{9}\)
Step 1: Prime factorisation of 9 = \(3^2\)
Step 2: Only prime factor is 3 (not 2 or 5).
Answer: Repeating decimal
iv. \(\frac{205}{27}\)
Step 1: Prime factorisation of 27 = \(3^3\)
Step 2: Contains 3 only, so repeating decimal.
Answer: Repeating decimal
v. \(\frac{461}{60}\)
Step 1: Prime factorisation of 60 = \(2^2 \times 3 \times 5\)
Step 2: Contains 3 → repeating decimal.
Answer: Repeating decimal
vi. \(\frac{1003}{112}\)
Step 1: Prime factorisation of 112 = \(2^4 \times 7\)
Step 2: Contains 7 → repeating decimal.
Answer: Repeating decimal
vii. \(\frac{127}{225}\)
Step 1: Prime factorisation of 225 = \(3^2 \times 5^2\)
Step 2: Contains 3 → repeating decimal.
Answer: Repeating decimal
viii. \(\frac{219}{440}\)
Step 1: Prime factorisation of 440 = \(2^3 \times 5 \times 11\)
Step 2: Contains 11 → repeating decimal.
Answer: Repeating decimal
Q4: By actual division, express each of the following as a repeating decimal:
i. \(\frac{103}{9}\)
Step 1: Divide 103 by 9.
11.4444... _____________ 9 | 103.000000 - 9 ______ 13 - 9 ______ 40 -36 ______ 40
Answer: \(\frac{103}{9} = 11.\overline{4}\)
ii. \(\frac{7}{12}\)
Step 1: Divide 7 by 12.
0.583333... _______________ 12 | 7.000000 -0 ----- 70 - 60 ----- 100 - 96 ----- 40 - 36 ----- 40
Answer: \(\frac{7}{12} = 0.58\overline{3}\)
iii. \(\frac{101}{15}\)
Step 1: Divide 101 by 15.
6.7333... ______________ 15 | 101.000 - 90 ----- 110 -105 ----- 50 - 45 ----- 50
Answer: \(\frac{101}{15} = 6.7\overline{3}\)
iv. \(\frac{303}{11}\)
Step 1: Divide 303 by 11.
27.545454... ________________ 11 | 303.000000 -22 ----- 83 -77 ----- 60 -55 ----- 50 -44 ----- 60
Answer: \(\frac{303}{11} = 27.\overline{54}\)
v. \(\frac{212}{143}\)
Step 1: Divide 212 by 143.
1.482517482517... ________________ 143 | 212.000000 -143 ----- 690 -572 ----- 1180 -1144 ----- 360 -286 ----- 740 -715 ----- 250 -143 ----- 1070 -1001 ----- 690
Answer: \(\frac{212}{143} = 1.\overline{482517}\)
vi. \(\frac{16}{7}\)
Step 1: Divide 16 by 7.
2.285714285714... ______________________ 7 | 16.000000000 -14 ----- 20 -14 ----- 60 -56 ----- 40 -35 ----- 50 -49 ----- 10 -7 ----- 30 -28 ----- 20
Answer: \(\frac{16}{7} = 2.\overline{285714}\)
vii. \(\frac{227}{30}\)
Step 1: Divide 227 by 30.
7.56666... _______________ 30 | 227.0000 -210 ----- 170 -150 ----- 200 -180 ----- 200
Answer: \(\frac{227}{30} = 7.5\overline{6}\)
viii. \(\frac{2000}{33}\)
Step 1: Divide 2000 by 33.
60.606060... ___________________ 33 | 2000.0000 -198 ----- 20 - 0 ----- 200 -198 ----- 20 - 0 ----- 200 -198 ----- 20
Answer: \(\frac{2000}{33} = 60.\overline{60}\)
Q5: Fill in the blanks:
i. \(\frac{2}{3} =\) ____
Step 1: Divide 2 by 3.
0.6666... ____________ 3 | 2.000000 -0 ----- 20 -18 ----- 20 -18 ----- 20
Answer: \(\frac{2}{3} = 0.\overline{6}\)
ii. \(\frac{11}{30} =\) ____
Step 1: Divide 11 by 30.
0.3666... __________ 30 | 11.0000 - 0 ----- 110 -90 ----- 200 -180 ----- 200
Answer: \(\frac{11}{30} = 0.3\overline{6}\)
iii. \(\frac{13}{11} =\) ____
Step 1: Divide 13 by 11.
1.181818... ___________ 11 | 13.00000 -11 ----- 20 - 11 ----- 90 - 88 ----- 20
Answer: \(\frac{13}{11} = 1.\overline{18}\)
iv. \(\frac{23}{55} =\) ____
Step 1: Divide 23 by 55.
0.418181... _______________ 55 | 23.00000 - 0 ----- 230 -220 ----- 100 - 55 ----- 450 -440 ----- 100
Answer: \(\frac{23}{55} = 0.4\overline{18}\)