Exercise: 4-E
Q1: Multiply:
i. \(\frac{2}{3}\) by \(\frac{4}{5}\)
Step 1: Multiply the numerators and the denominators
\[
\frac{2}{3} \times \frac{4}{5} = \frac{2 \times 4}{3 \times 5} = \frac{8}{15}
\]
Answer: \(\frac{8}{15}\)
ii. \(\frac{7}{6}\) by \(\frac{9}{2}\)
Step 1: Multiply the numerators and denominators
\[
\frac{7}{6} \times \frac{9}{2} = \frac{63}{12} = \frac{21}{4}
\]
Answer: \(\frac{21}{4}\)
iii. \(\frac{5}{6}\) by 30
Step 1: Convert 30 into a fraction → \(\frac{30}{1}\)
\[
\frac{5}{6} \times \frac{30}{1} = \frac{150}{6} = 25
\]
Answer: 25
iv. \(\frac{-3}{4}\) by \(\frac{8}{7}\)
Step 1: Multiply the numerators and denominators
\[
\frac{-3}{4} \times \frac{8}{7} = \frac{-24}{28} = \frac{-6}{7}
\]
Answer: \(\frac{-6}{7}\)
v. \(\frac{-16}{9}\) by \(\frac{12}{-5}\)
Step 1: Multiply the signs and simplify
\[
\frac{-16}{9} \times \frac{12}{-5} = \frac{192}{45} = \frac{64}{15}
\]
Answer: \(\frac{64}{15}\)
vi. \(\frac{35}{-8}\) by \(\frac{12}{-5}\)
Step 1: Multiply and handle negatives
\[
\frac{35}{-8} \times \frac{12}{-5} = \frac{420}{40} = \frac{21}{2}
\]
Answer: \(\frac{21}{2}\)
vii. \(\frac{-3}{10}\) by \(\frac{-40}{9}\)
Step 1: Multiply the numbers and cancel out
\[
\frac{-3}{10} \times \frac{-40}{9} = \frac{120}{90} = \frac{4}{3}
\]
Answer: \(\frac{4}{3}\)
viii. \(\frac{-32}{5}\) by \(\frac{15}{-16}\)
Step 1: Multiply and simplify signs
\[
\frac{-32}{5} \times \frac{15}{-16} = \frac{480}{80} = 6
\]
Answer: 6
ix. \(\frac{-8}{15}\) by \(\frac{-25}{32}\)
Step 1: Multiply numerators and denominators
\[
\frac{-8}{15} \times \frac{-25}{32} = \frac{200}{480} = \frac{5}{12}
\]
Answer: \(\frac{5}{12}\)
Q2: Simplify:
i. \(\frac{7}{15} \times \frac{5}{6}\)
Step 1: Multiply the numerators:
\[
7 \times 5 = 35
\]
Step 2: Multiply the denominators:
\[
15 \times 6 = 90
\]
Step 3: Write the fraction:
\[
\frac{35}{90}
\]
Step 4: Simplify by dividing numerator and denominator by 5:
\[
\frac{35 \div 5}{90 \div 5} = \frac{7}{18}
\]
Answer: \(\frac{7}{18}\)
ii. \(\frac{-5}{24} \times \frac{6}{25}\)
Step 1: Multiply numerators:
\[
-5 \times 6 = -30
\]
Step 2: Multiply denominators:
\[
24 \times 25 = 600
\]
Step 3: Write the fraction:
\[
\frac{-30}{600}
\]
Step 4: Simplify by dividing numerator and denominator by 30:
\[
\frac{-30 \div 30}{600 \div 30} = \frac{-1}{20}
\]
Answer: \(\frac{-1}{20}\)
iii. \(\frac{7}{-18} \times \frac{-9}{14}\)
Step 1: Multiply numerators:
\[
7 \times -9 = -63
\]
Step 2: Multiply denominators:
\[
-18 \times 14 = -252
\]
Step 3: Write the fraction:
\[
\frac{-63}{-252}
\]
Step 4: Negative signs cancel each other:
\[
\frac{63}{252}
\]
Step 5: Simplify by dividing numerator and denominator by 63:
\[
\frac{63 \div 63}{252 \div 63} = \frac{1}{4}
\]
Answer: \(\frac{1}{4}\)
iv. \(\frac{-9}{5} \times \frac{-10}{3}\)
Step 1: Multiply numerators:
\[
-9 \times -10 = 90
\]
Step 2: Multiply denominators:
\[
5 \times 3 = 15
\]
Step 3: Write the fraction:
\[
\frac{90}{15}
\]
Step 4: Simplify by dividing numerator and denominator by 15:
\[
\frac{90 \div 15}{15 \div 15} = \frac{6}{1} = 6
\]
Answer: 6
v. \(-28 \times \frac{-8}{7}\)
Step 1: Express -28 as a fraction:
\[
-28 = \frac{-28}{1}
\]
Step 2: Multiply numerators:
\[
-28 \times -8 = 224
\]
Step 3: Multiply denominators:
\[
1 \times 7 = 7
\]
Step 4: Write the fraction:
\[
\frac{224}{7}
\]
Step 5: Simplify by dividing numerator and denominator by 7:
\[
\frac{224 \div 7}{7 \div 7} = \frac{32}{1} = 32
\]
Answer: 32
vi. \(\frac{8}{-21} \times \frac{-14}{3}\)
Step 1: Multiply numerators:
\[
8 \times -14 = -112
\]
Step 2: Multiply denominators:
\[
-21 \times 3 = -63
\]
Step 3: Write the fraction:
\[
\frac{-112}{-63}
\]
Step 4: Negative signs cancel out:
\[
\frac{112}{63}
\]
Step 5: Simplify by dividing numerator and denominator by 7:
\[
\frac{112 \div 7}{63 \div 7} = \frac{16}{9}
\]
Answer: \(\frac{16}{9}\)
Q3: Simplify:
i. \(\frac{5}{12} \times (-36)\)
Step 1: Express -36 as a fraction:
\[
-36 = \frac{-36}{1}
\]
Step 2: Multiply numerators:
\[
5 \times (-36) = -180
\]
Step 3: Multiply denominators:
\[
12 \times 1 = 12
\]
Step 4: Write the fraction:
\[
\frac{-180}{12}
\]
Step 5: Simplify by dividing numerator and denominator by 12:
\[
\frac{-180 \div 12}{12 \div 12} = \frac{-15}{1} = -15
\]
Answer: -15
ii. \(\frac{-17}{18} \times 12\)
Step 1: Express 12 as a fraction:
\[
12 = \frac{12}{1}
\]
Step 2: Multiply numerators:
\[
-17 \times 12 = -204
\]
Step 3: Multiply denominators:
\[
18 \times 1 = 18
\]
Step 4: Write the fraction:
\[
\frac{-204}{18}
\]
Step 5: Simplify by dividing numerator and denominator by 6:
\[
\frac{-204 \div 6}{18 \div 6} = \frac{-34}{3}
\]
Answer: \(\frac{-34}{3}\)
iii. \(\frac{-5}{6} \times \frac{6}{5}\)
Step 1: Multiply numerators:
\[
-5 \times 6 = -30
\]
Step 2: Multiply denominators:
\[
6 \times 5 = 30
\]
Step 3: Write the fraction:
\[
\frac{-30}{30}
\]
Step 4: Simplify the fraction:
\[
\frac{-30}{30} = -1
\]
Answer: -1
iv. \(-14 \times \frac{9}{28}\)
Step 1: Express -14 as a fraction:
\[
-14 = \frac{-14}{1}
\]
Step 2: Multiply numerators:
\[
-14 \times 9 = -126
\]
Step 3: Multiply denominators:
\[
1 \times 28 = 28
\]
Step 4: Write the fraction:
\[
\frac{-126}{28}
\]
Step 5: Simplify by dividing numerator and denominator by 14:
\[
\frac{-126 \div 14}{28 \div 14} = \frac{-9}{2}
\]
Answer: \(\frac{-9}{2}\)
v. \(-4\frac{4}{5} \times \left(-7\frac{1}{2}\right)\)
Step 1: Convert mixed numbers to improper fractions:
\[
-4\frac{4}{5} = \frac{-24}{5}, \quad -7\frac{1}{2} = \frac{-15}{2}
\]
Step 2: Multiply numerators:
\[
-24 \times -15 = 360
\]
Step 3: Multiply denominators:
\[
5 \times 2 = 10
\]
Step 4: Write the fraction:
\[
\frac{360}{10}
\]
Step 5: Simplify by dividing numerator and denominator by 10:
\[
\frac{360 \div 10}{10 \div 10} = \frac{36}{1} = 36
\]
Answer: 36
vi. \(\frac{-8}{15} \times \frac{-25}{32}\)
Step 1: Multiply numerators:
\[
-8 \times -25 = 200
\]
Step 2: Multiply denominators:
\[
15 \times 32 = 480
\]
Step 3: Write the fraction:
\[
\frac{200}{480}
\]
Step 4: Simplify by dividing numerator and denominator by 40:
\[
\frac{200 \div 40}{480 \div 40} = \frac{5}{12}
\]
Answer: \(\frac{5}{12}\)
Q4: Simplify:
i. \(\left(\frac{2}{5} \times \frac{5}{8}\right) + \left(\frac{-3}{7} \times \frac{14}{-15}\right)\)
Step 1: Multiply the first pair:
\[
\frac{2}{5} \times \frac{5}{8} = \frac{2 \times 5}{5 \times 8} = \frac{10}{40} = \frac{1}{4}
\]Step 2: Multiply the second pair:
\[
\frac{-3}{7} \times \frac{14}{-15} = \frac{-3 \times 14}{7 \times -15} = \frac{-42}{-105} = \frac{42}{105}
\]
Simplify \(\frac{42}{105}\): divide numerator and denominator by 21:
\[
\frac{42 \div 21}{105 \div 21} = \frac{2}{5}
\]Step 3: Add the two results:
\[
\frac{1}{4} + \frac{2}{5} = \frac{1 \times 5}{4 \times 5} + \frac{2 \times 4}{5 \times 4} = \frac{5}{20} + \frac{8}{20} = \frac{13}{20}
\]Answer: \(\frac{13}{20}\)
ii. \(\left(\frac{-14}{3} \times \frac{-12}{7}\right) + \left(\frac{-6}{25} \times \frac{15}{8}\right)\)
Step 1: Multiply the first pair:
\[
\frac{-14}{3} \times \frac{-12}{7} = \frac{-14 \times -12}{3 \times 7} = \frac{168}{21} = 8
\]Step 2: Multiply the second pair:
\[
\frac{-6}{25} \times \frac{15}{8} = \frac{-6 \times 15}{25 \times 8} = \frac{-90}{200}
\]
Simplify \(\frac{-90}{200}\) dividing numerator and denominator by 10:
\[
\frac{-90 \div 10}{200 \div 10} = \frac{-9}{20}
\]Step 3: Add the two results:
\[
8 + \left(\frac{-9}{20}\right) = \frac{8 \times 20}{20} – \frac{9}{20} = \frac{160}{20} – \frac{9}{20} = \frac{151}{20}
\]Answer: \(\frac{151}{20}\)
iii. \(\left(\frac{6}{25} \times \frac{-15}{8}\right) – \left(\frac{13}{100} \times \frac{-25}{26}\right)\)
Step 1: Multiply the first pair:
\[
\frac{6}{25} \times \frac{-15}{8} = \frac{6 \times -15}{25 \times 8} = \frac{-90}{200}
\]
Simplify by dividing numerator and denominator by 10:
\[
\frac{-9}{20}
\]Step 2: Multiply the second pair:
\[
\frac{13}{100} \times \frac{-25}{26} = \frac{13 \times -25}{100 \times 26} = \frac{-325}{2600}
\]
Simplify by dividing numerator and denominator by 25:
\[
\frac{-13}{104}
\]Step 3: Subtract:
\[
\frac{-9}{20} – \left(\frac{-13}{104}\right) = \frac{-9}{20} + \frac{13}{104}
\]Find LCM of 20 and 104, which is 520:
\[
\frac{-9 \times 26}{520} + \frac{13 \times 5}{520} = \frac{-234}{520} + \frac{65}{520} = \frac{-169}{520}
\]Simplify numerator and denominator by 13:
\[
\frac{-169 \div 13}{520 \div 13} = \frac{-13}{40}
\]Answer: \(\frac{-13}{40}\)
iv. \(\left(\frac{-14}{5} \times \frac{-10}{7}\right) – \left(\frac{-8}{9} \times \frac{3}{16}\right)\)
Step 1: Multiply the first pair:
\[
\frac{-14}{5} \times \frac{-10}{7} = \frac{-14 \times -10}{5 \times 7} = \frac{140}{35} = 4
\]Step 2: Multiply the second pair:
\[
\frac{-8}{9} \times \frac{3}{16} = \frac{-8 \times 3}{9 \times 16} = \frac{-24}{144} = \frac{-1}{6}
\]Step 3: Subtract:
\[
4 – \left(\frac{-1}{6}\right) = 4 + \frac{1}{6} = \frac{24}{6} + \frac{1}{6} = \frac{25}{6}
\]Answer: \(\frac{25}{6}\)
Q5: Find the cost of \(3\frac{1}{3}\) kg of rice at ₹\(40\frac{1}{2}\) per kg.
Step 1: Convert mixed fractions into improper fractions.\[
3\frac{1}{3} = \frac{3 \times 3 + 1}{3} = \frac{10}{3} \\
40\frac{1}{2} = \frac{40 \times 2 + 1}{2} = \frac{81}{2}
\]Step 2: Multiply the quantity of rice by the price per kg to find the total cost.\[
\text{Cost} = \frac{10}{3} \times \frac{81}{2} = \frac{10 \times 81}{3 \times 2} = \frac{810}{6}
\]Step 3: Simplify the fraction.\[
\frac{810}{6} = 135
\]Answer: ₹135
Q6: Find the distance covered by a car in \(2\frac{2}{5}\) hours at a speed of \(46\frac{2}{3}\) km per hour.
Step 1: Convert the mixed fractions into improper fractions.\[
2\frac{2}{5} = \frac{2 \times 5 + 2}{5} = \frac{12}{5} \\
46\frac{2}{3} = \frac{46 \times 3 + 2}{3} = \frac{140}{3}
\]Step 2: Use the formula for distance:\[
\text{Distance} = \text{Speed} \times \text{Time}
\]Substitute the values:\[
\text{Distance} = \frac{140}{3} \times \frac{12}{5} = \frac{140 \times 12}{3 \times 5} = \frac{1680}{15}
\]Step 3: Simplify the fraction.\[
\frac{1680}{15} = 112
\]Answer: 112 km
Q7: Write the multiplicative inverse of:
i. \(\frac{5}{6}\)
Step 1: The multiplicative inverse of a rational number \(\frac{a}{b}\) (where \(a \neq 0\)) is \(\frac{b}{a}\).\[
\text{Multiplicative inverse of } \frac{5}{6} = \frac{6}{5}
\]Answer: \(\frac{6}{5}\)
ii. \(\frac{-3}{7}\)
\[
\text{Multiplicative inverse of } \frac{-3}{7} = \frac{7}{-3} = -\frac{7}{3}
\]Answer: \(-\frac{7}{3}\)
iii. \(-8\)
\[
\text{Multiplicative inverse of } -8 = \frac{1}{-8} = -\frac{1}{8}
\]Answer: \(-\frac{1}{8}\)
iv. \(\frac{-11}{3}\)
\[
\text{Multiplicative inverse of } \frac{-11}{3} = \frac{3}{-11} = -\frac{3}{11}
\]Answer: \(-\frac{3}{11}\)
v. \(\frac{-1}{8}\)
\[
\text{Multiplicative inverse of } \frac{-1}{8} = \frac{8}{-1} = -8
\]Answer: \(-8\)