Rational Numbers

rational numbers class 8 selina

Step by Step solutions of Concise Mathematics ICSE Class-8 Maths chapter 1- Rational Numbers by Selina is provided.

Table of Contents

Exercise: 1-A

Q1: Multiple Choice Type

i. A number which is not rational is called:
Explanation:
Rational numbers can be expressed in the form \(\frac{p}{q}\), where \(p, q \in \mathbb{Z}\), and \(q \ne 0\).
Numbers that cannot be expressed in this form are called irrational numbers.
Example: \(\sqrt{2}, \pi, e\)
Answer: c. an irrational number

ii. If x ≠ 0 then the value of \(\frac{0}{x}\) is.
Explanation: \[ \frac{0}{x} = 0 \quad \text{(since anything multiplied with 0 is 0)} \] And 0 is a rational number (as \(0 = \frac{0}{1}\))
Answer: a. a rational number

iii. The equation 5x + 7 = 0, gives the value of x which is:
Explanation: \[ 5x + 7 = 0 \Rightarrow 5x = -7 \Rightarrow x = \frac{-7}{5} \] \(\frac{-7}{5}\) is a rational number (p/q form)
Answer: c. a rational number

iv. Rational number \(\frac{p}{q}\) is in standard form, if:
Explanation:
Standard form means:
– No common factor between \(p\) and \(q\) (other than 1)
– \(q \ne 0\)
Answer: c. p and q have no common factor and q ≠ 0.

v. The addition of two rational numbers \(\frac{a}{b}\ and\ \frac{c}{d}\) is commutative, if:
Explanation:
Commutative property of addition states: \[ a + b = b + a \] This holds true for rational numbers as well.
Answer: c. \(\frac{a}{b} + \frac{c}{d} = \frac{c}{d} + \frac{a}{b}\)

vi. \(-\frac{3}{7}+\) additive inverse of \(\frac{-3}{7}\) is:
Explanation:
Additive inverse of \(\frac{-3}{7}\) is \(\frac{3}{7}\) \[ -\frac{3}{7} + \frac{3}{7} = 0 \] Answer: b. 0


Q2: Add each pair of rational numbers, given below, and show that their addition (sum) is also a rational number:

i. \(\frac{-5}{8}\ and\ \frac{3}{8}\) \[ \frac{-5}{8} + \frac{3}{8} = \frac{-5 + 3}{8} = \frac{-2}{8} = \frac{-1}{4} \] Answer: \(\frac{-1}{4}\) — a rational number

ii. \(\frac{-8}{13}\) and \(\frac{-4}{13}\) \[ \frac{-8}{13} + \frac{-4}{13} = \frac{-8 – 4}{13} = \frac{-12}{13} \] Answer: \(\frac{-12}{13}\) — a rational number

iii. \(\frac{6}{11}\ and\ \frac{-9}{11}\)) \[ \frac{6}{11} + \frac{-9}{11} = \frac{6 – 9}{11} = \frac{-3}{11} \] Answer: \(\frac{-3}{11}\) — a rational number

iv. \(\frac{5}{-26}\ and\ \frac{8}{39}\)
Convert \(\frac{5}{-26} = \frac{-5}{26}\)
LCM of 26 and 39 = 78 \[ \frac{-5}{26} = \frac{-15}{78}, \quad \frac{8}{39} = \frac{16}{78} \] \[ \frac{-15}{78} + \frac{16}{78} = \frac{1}{78} \] Answer: \(\frac{1}{78}\) — a rational number

v. \(\frac{5}{-6}\ and\ \frac{2}{3}\)
Convert \(\frac{5}{-6} = \frac{-5}{6}\) \[ \frac{-5}{6} + \frac{2}{3} = \frac{-5}{6} + \frac{4}{6} = \frac{-1}{6} \] Answer: \(\frac{-1}{6}\) — a rational number

vi. \(2\ and\ \frac{2}{5}\)
\[ -2 + \frac{2}{5} = \frac{-10}{5} + \frac{2}{5} = \frac{-8}{5} \]
Answer: \(\frac{-8}{5}\) — a rational number

vii. \(\frac{9}{-4}\ and\frac{-3}{8} \)
Convert \(\frac{9}{-4} = \frac{-9}{4}\)
LCM of 4 and 8 = 8 \[ \frac{-9}{4} = \frac{-18}{8}, \quad \frac{-3}{8} = \frac{-3}{8} \] \[ \frac{-18}{8} + \frac{-3}{8} = \frac{-21}{8} \] Answer: \(\frac{-21}{8}\) — a rational number

viii. \(\frac{7}{-18}\ and\ \frac{8}{27}\)
Convert \(\frac{7}{-18} = \frac{-7}{18}\)
LCM of 18 and 27 = 54 \[ \frac{-7}{18} = \frac{-21}{54}, \quad \frac{8}{27} = \frac{16}{54} \] \[ \frac{-21}{54} + \frac{16}{54} = \frac{-5}{54} \] Answer: \(\frac{-5}{54}\) — a rational number


Q3: Evaluate

i. \(\frac{5}{9}+\frac{-7}{6}\)
LCM of 9 and 6 = 18 \[ \frac{5}{9} = \frac{10}{18}, \quad \frac{-7}{6} = \frac{-21}{18} \] \[ \frac{10}{18} + \frac{-21}{18} = \frac{-11}{18} \] Answer: \(\frac{-11}{18}\)

ii. \(4+\frac{3}{-5}\)
Convert \(\frac{3}{-5} = \frac{-3}{5}\) \[ 4 = \frac{20}{5}, \quad \frac{-3}{5} = \frac{-3}{5} \] \[ \frac{20}{5} + \frac{-3}{5} = \frac{17}{5} \] Answer: \(\frac{17}{5}\)

iii. \(\frac{1}{-15}+\frac{5}{-12}\)
Convert: \(\frac{1}{-15} = \frac{-1}{15},\ \frac{5}{-12} = \frac{-5}{12}\)
LCM of 15 and 12 = 60 \[ \frac{-1}{15} = \frac{-4}{60}, \quad \frac{-5}{12} = \frac{-25}{60} \] \[ \frac{-4}{60} + \frac{-25}{60} = \frac{-29}{60} \] Answer: \(\frac{-29}{60}\)

iv. \(\frac{5}{9}+\frac{3}{-4}\)
Convert: \(\frac{3}{-4} = \frac{-3}{4}\)
LCM of 9 and 4 = 36 \[ \frac{5}{9} = \frac{20}{36}, \quad \frac{-3}{4} = \frac{-27}{36} \] \[ \frac{20}{36} + \frac{-27}{36} = \frac{-7}{36} \] Answer: \(\frac{-7}{36}\)

v. \(\frac{-8}{9}+\frac{-5}{12}\)
LCM of 9 and 12 = 36 \[ \frac{-8}{9} = \frac{-32}{36}, \quad \frac{-5}{12} = \frac{-15}{36} \] \[ \frac{-32}{36} + \frac{-15}{36} = \frac{-47}{36} \] Answer: \(\frac{-47}{36}\)

vi. \(0+\frac{-2}{7}\) \[ 0 + \frac{-2}{7} = \frac{-2}{7} \] Answer: \(\frac{-2}{7}\)

vii. \(\frac{5}{-11}+0\)
Convert \(\frac{5}{-11} = \frac{-5}{11}\) \[ \frac{-5}{11} + 0 = \frac{-5}{11} \] Answer: \(\frac{-5}{11}\)

viii. \(2+\frac{-3}{5}\) \[ 2 = \frac{10}{5}, \quad \frac{-3}{5} = \frac{-3}{5} \] \[ \frac{10}{5} + \frac{-3}{5} = \frac{7}{5} \] Answer: \(\frac{7}{5}\)

ix. \(\frac{4}{-9}+1\)
Convert \(\frac{4}{-9} = \frac{-4}{9}\) \[ 1 = \frac{9}{9}, \quad \frac{-4}{9} + \frac{9}{9} = \frac{5}{9} \] Answer: \(\frac{5}{9}\)


Q4: Evaluate

i. \(\frac{3}{7}+\frac{-4}{9}+\frac{-11}{7}+\frac{7}{9}\)
Group same denominators: \[ \left(\frac{3}{7} + \frac{-11}{7}\right) + \left(\frac{-4}{9} + \frac{7}{9}\right) \] \[ = \frac{-8}{7} + \frac{3}{9} = \frac{-8}{7} + \frac{1}{3} \] LCM of 7 and 3 = 21 \[ \frac{-8}{7} = \frac{-24}{21}, \quad \frac{1}{3} = \frac{7}{21} \] \[ \frac{-24}{21} + \frac{7}{21} = \frac{-17}{21} \] Answer: \(\frac{-17}{21}\)

ii. \(\frac{2}{3}+\frac{-4}{5}+\frac{1}{3}+\frac{2}{5}\)
Group like denominators: \[ \left(\frac{2}{3} + \frac{1}{3}\right) + \left(\frac{-4}{5} + \frac{2}{5}\right) \] \[ = \frac{3}{3} + \frac{-2}{5} = 1 + \frac{-2}{5} \] \[ = \frac{5}{5} + \frac{-2}{5} = \frac{3}{5} \] Answer: \(\frac{3}{5}\)

iii. \(\frac{4}{7}+0+\frac{-8}{9}+\frac{-13}{7}+\frac{17}{9}\)
Group by denominators: \[ \left(\frac{4}{7} + \frac{-13}{7}\right) + \left(\frac{-8}{9} + \frac{17}{9}\right) + 0 \] \[ = \frac{-9}{7} + \frac{9}{9} = \frac{-9}{7} + 1 \] \[ 1 = \frac{7}{7}, \quad \frac{-9}{7} + \frac{7}{7} = \frac{-2}{7} \] Answer: \(\frac{-2}{7}\)

iv. \(\frac{3}{8}+\frac{-5}{12}+\frac{3}{7}+\frac{3}{12}+\frac{-5}{8}+\frac{-2}{7}\)
Group like denominators: \[ \left(\frac{3}{8} + \frac{-5}{8}\right) + \left(\frac{-5}{12} + \frac{3}{12}\right) + \left(\frac{3}{7} + \frac{-2}{7}\right) \] \[ = \frac{-2}{8} + \frac{-2}{12} + \frac{1}{7} \] Simplify: \(\frac{-2}{8} = \frac{-1}{4}, \quad \frac{-2}{12} = \frac{-1}{6}\)
Now add: \(\frac{-1}{4} + \frac{-1}{6} + \frac{1}{7}\)
LCM of 4, 6, 7 = 84 \[ \frac{-1}{4} = \frac{-21}{84}, \quad \frac{-1}{6} = \frac{-14}{84}, \quad \frac{1}{7} = \frac{12}{84} \] \[ \frac{-21 -14 + 12}{84} = \frac{-23}{84} \] Answer: \(\frac{-23}{84}\)


Q5: For pair of rational numbers, verify the commutative property of addition of rational numbers:

i. \(\frac{-8}{7}\ and\ \frac{5}{14}\)
Check if: \(\frac{-8}{7} + \frac{5}{14} = \frac{5}{14} + \frac{-8}{7}\)
LCM of 7 and 14 = 14 \[ \frac{-8}{7} = \frac{-16}{14}, \quad \frac{-16}{14} + \frac{5}{14} = \frac{-11}{14} \] Now reverse order: \[ \frac{5}{14} + \frac{-8}{7} = \frac{5}{14} + \frac{-16}{14} = \frac{-11}{14} \] Property Verified ✅

ii. \(\frac{5}{9}\ and\ \frac{5}{-12}\)
LCM of 9 and 12 = 36 \[ \frac{5}{9} = \frac{20}{36}, \quad \frac{5}{-12} = \frac{-15}{36} \] \[ \frac{5}{9} + \frac{5}{-12} = \frac{20}{36} + \frac{-15}{36} = \frac{5}{36} \] \[ \frac{5}{-12} + \frac{5}{9} = \frac{-15}{36} + \frac{20}{36} = \frac{5}{36} \] Property Verified ✅

iii. \(\frac{-4}{5}\ and\ \frac{-13}{-15}\)
\(\frac{-13}{-15} = \frac{13}{15}\) (negative cancels)
LCM of 5 and 15 = 15 \[ \frac{-4}{5} = \frac{-12}{15} \] \[ \frac{-12}{15} + \frac{13}{15} = \frac{1}{15} \] \[ \frac{13}{15} + \frac{-12}{15} = \frac{1}{15} \] Property Verified ✅

iv. \(\frac{2}{-5}\ and\ \frac{11}{-15}\)
\(\frac{2}{-5} = \frac{-2}{5}, \quad \frac{11}{-15} = \frac{-11}{15}\)
LCM = 15 \[ \frac{-2}{5} = \frac{-6}{15} \] \[ \frac{-6}{15} + \frac{-11}{15} = \frac{-17}{15} \] \[ \frac{-11}{15} + \frac{-6}{15} = \frac{-17}{15} \] Property Verified ✅

v. \(3\ and\ \frac{-2}{7}\) \[ 3 + \frac{-2}{7} = \frac{21}{7} + \frac{-2}{7} = \frac{19}{7} \] \[ \frac{-2}{7} + 3 = \frac{-2}{7} + \frac{21}{7} = \frac{19}{7} \] Property Verified ✅

vi. \(-2\ and\ \frac{3}{-5}\) \(\frac{3}{-5} = \frac{-3}{5}\)
\[ -2 + \left(\frac{-3}{5}\right) = \frac{-10}{5} + \frac{-3}{5} = \frac{-13}{5} \] \[ \frac{-3}{5} + (-2) = \frac{-3}{5} + \frac{-10}{5} = \frac{-13}{5} \] Property Verified ✅


Q6: For each set of rational numbers, given below, verify the associative property of addition of rational numbers:

i. \(\frac{1}{2},\ \frac{2}{3}\ and-\frac{1}{6}\)
Check if: \((\frac{1}{2} + \frac{2}{3}) + (-\frac{1}{6}) = \frac{1}{2} + (\frac{2}{3} + (-\frac{1}{6}))\)
Left Side: \[ \frac{1}{2} + \frac{2}{3} = \frac{3}{6} + \frac{4}{6} = \frac{7}{6} \] \[ \frac{7}{6} + (-\frac{1}{6}) = \frac{6}{6} = 1 \]Riht Side: \[ \frac{2}{3} + (-\frac{1}{6}) = \frac{4}{6} + (-\frac{1}{6}) = \frac{3}{6} = \frac{1}{2} \] \[ \frac{1}{2} + \frac{1}{2} = 1 \]Property Verified ✅

ii. \(\frac{-2}{5},\ \frac{4}{15}\ and\ \frac{-7}{10}\)
Left Side: \[ \frac{-2}{5} + \frac{4}{15} = \frac{-6}{15} + \frac{4}{15} = \frac{-2}{15} \] \[ \frac{-2}{15} + \frac{-7}{10} = \frac{-4}{30} + \frac{-21}{30} = \frac{-25}{30} = \frac{-5}{6} \]Right Side: \[ \frac{4}{15} + \frac{-7}{10} = \frac{8}{30} + \frac{-21}{30} = \frac{-13}{30} \] \[ \frac{-2}{5} + \frac{-13}{30} = \frac{-12}{30} + \frac{-13}{30} = \frac{-25}{30} = \frac{-5}{6} \]Property Verified ✅

iii. \(\frac{-7}{9},\ \frac{2}{-3}\ and\ \frac{-5}{18}\)
Left Side: \[ \frac{-7}{9} + \frac{-2}{3} = \frac{-14}{18} + \frac{-12}{18} = \frac{-26}{18} \] \[ \frac{-26}{18} + \frac{-5}{18} = \frac{-31}{18} \]Right Side: \[ \frac{-2}{3} + \frac{-5}{18} = \frac{-12}{18} + \frac{-5}{18} = \frac{-17}{18} \] \[ \frac{-7}{9} + \frac{-17}{18} = \frac{-14}{18} + \frac{-17}{18} = \frac{-31}{18} \]Property Verified ✅

iv. \(-1,\ \frac{5}{6}\ and\ \frac{-2}{3}\)
Left Side: \[ -1 + \frac{5}{6} = \frac{-6}{6} + \frac{5}{6} = \frac{-1}{6} \] \[ \frac{-1}{6} + \frac{-2}{3} = \frac{-1}{6} + \frac{-4}{6} = \frac{-5}{6} \]Right Side: \[ \frac{5}{6} + \frac{-2}{3} = \frac{5}{6} + \frac{-4}{6} = \frac{1}{6} \] \[ -1 + \frac{1}{6} = \frac{-6}{6} + \frac{1}{6} = \frac{-5}{6} \]Property Verified ✅


Q7: Write he additive inverse (negative) of:

i. \(\frac{-3}{8}\)
The additive inverse of a number is the number which when added gives 0.
So, we need a number such that: \[ \frac{-3}{8} + x = 0 \Rightarrow x = \frac{3}{8} \] Answer: \(\frac{3}{8}\)

ii. \(\frac{4}{-9}\)
\(\frac{4}{-9} = -\frac{4}{9}\), so its additive inverse is: \[ -\frac{4}{9} + x = 0 \Rightarrow x = \frac{4}{9} \] Answer: \(\frac{4}{9}\)

iii. \(\frac{-4}{-13}\)
\(\frac{-4}{-13} = \frac{4}{13}\), because negative sign cancels out.
So, the additive inverse is: \[ \frac{4}{13} + x = 0 \Rightarrow x = -\frac{4}{13} \] Answer: \(-\frac{4}{13}\)

iv. 0
\[ 0 + 0 = 0 \]
Answer: 0 (Additive inverse of 0 is 0 itself)

v. -2 \[ -2 + x = 0 \Rightarrow x = 2 \] Answer: 2

vi. 1 \[ 1 + x = 0 \Rightarrow x = -1 \] Answer: -1


Q8: Fill in the blanks

i. Additive inverse of \(\frac{-5}{-12}\) = __________ \[ \frac{-5}{-12} = \frac{5}{12} \quad \text{(negative sign cancels out)} \] So, its additive inverse is: \[ -\frac{5}{12} \] Answer: \(-\frac{5}{12}\)

ii. \(\frac{-5}{-12}+\) its additive inverse = __________ \[ \frac{-5}{-12} + (-\frac{5}{12}) = \frac{5}{12} + (-\frac{5}{12}) = 0 \] Answer: 0

iii. If \(\frac{a}{b}\) is additive inverse of \(\frac{-c}{d}\), then \(\frac{-c}{d}\) is additive inverse of _________.
Additive inverse works both ways: \[ \frac{a}{b} = -\left(\frac{-c}{d}\right) = \frac{c}{d} \Rightarrow \frac{-c}{d} \text{ is additive inverse of } \frac{a}{b} \] Answer: \(\frac{a}{b}\)

iv. And, so \(\frac{a}{b}+\frac{\left(-c\right)}{d}=\frac{(-c)}{d}+\frac{a}{b}=\)__________
If they are additive inverses: \[ \frac{a}{b} + \frac{-c}{d} = 0 \quad \text{and} \quad \frac{-c}{d} + \frac{a}{b} = 0 \] Answer: 0


Q9: State, true or false:

i. \(\frac{7}{9}=\frac{7+5}{9+5}\)
LHS: \(\frac{7}{9}\)
RHS: \(\frac{12}{14}\) \[ \frac{7}{9} \neq \frac{12}{14} \] Answer: False

ii. \(\frac{7}{9}=\frac{7-5}{9-5}\)
LHS: \(\frac{7}{9}\)
RHS: \(\frac{2}{4} = \frac{1}{2}\) \[ \frac{7}{9} \neq \frac{1}{2} \] Answer: False

iii. \(\frac{7}{9}=\frac{7\times5}{9\times5}\)
RHS: \(\frac{35}{45}\), which simplifies: \[ \frac{35}{45} = \frac{7}{9} \] So, both sides are equal.
Answer: True

iv. \(\frac{7}{9}=\frac{7\div5}{9\div5}\)
RHS: \(\frac{7 \div 5}{9 \div 5} = \frac{7/5}{9/5} = \frac{7}{9}\)
So, both sides are equal.
Answer: True

v. \(\frac{-5}{-12}\) is a negative rational number \[ \frac{-5}{-12} = \frac{5}{12} \quad \text{(negative sign cancels out)} \] This is a positive rational number.
Answer: False

vi. \(\frac{-13}{25}\) is smaller than \(\frac{-25}{13}\).
Compare: \(\frac{-13}{25} \approx -0.52\), \(\frac{-25}{13} \approx -1.92\) \[ -0.52 > -1.92 \Rightarrow \frac{-13}{25} \text{ is greater than } \frac{-25}{13} \] Answer: False


Q10: The weight of an empty fruit basket is \(2\frac{1}{3}\) kg. It contains \(5\frac{5}{6}\) kg grapes and \(8\frac{3}{8}\) kg mangoes. Find the total weight of basket with fruits.

Step 1: Convert mixed numbers to improper fractions \[ 2\frac{1}{3} = \frac{2 \times 3 + 1}{3} = \frac{7}{3} \] \[ 5\frac{5}{6} = \frac{5 \times 6 + 5}{6} = \frac{35}{6} \] \[ 8\frac{3}{8} = \frac{8 \times 8 + 3}{8} = \frac{67}{8} \]Step 2: Add all three rational numbers \[ \text{Total weight} = \frac{7}{3} + \frac{35}{6} + \frac{67}{8} \]Step 3: Find LCM of denominators 3, 6, and 8 \[ \text{LCM}(3,6,8) = 24 \]Step 4: Convert to like denominators \[ \frac{7}{3} = \frac{7 \times 8}{3 \times 8} = \frac{56}{24} \] \[ \frac{35}{6} = \frac{35 \times 4}{6 \times 4} = \frac{140}{24} \] \[ \frac{67}{8} = \frac{67 \times 3}{8 \times 3} = \frac{201}{24} \]
Step 5: Add all converted fractions \[ \frac{56}{24} + \frac{140}{24} + \frac{201}{24} = \frac{397}{24} \] Step 6: Convert improper fraction to mixed number \[ \frac{397}{24} = 16 \text{ remainder } 13 = 16\frac{13}{24} \]Answer: The total weight of the basket with fruits is \(16\frac{13}{24}\) kg

previous
next

Share the Post:

Leave a Comment

Your email address will not be published. Required fields are marked *

Related Posts​

  • Type casting in Java
    The process of converting the value of one data type to another data type is known as typecasting.
  • Identities
    Step by Step solutions of Test Yourself Concise Mathematics ICSE Class-8 Maths chapter 12- Identities by Selina is provided.

Join Our Newsletter

Name
Email
The form has been submitted successfully!
There has been some error while submitting the form. Please verify all form fields again.

Scroll to Top