Exercise: 6-C
Mental Maths
Q1: Fill in the blanks
i. 240 ml is _______ % of 3l.
Step 1: Convert 3 litres = 3000 ml
Step 2:
\[
\frac{240}{3000} \times 100 = 8\%
\]
Answer: 8%
ii. If x% of 35 is 42, then x = ______.
Step 1:
\[
\frac{x}{100} \times 35 = 42 \\
\Rightarrow x = \frac{42 \times 100}{35} = 120
\]
Answer: 120
iii. x% of y is y % of _______.
Step 1:
\[
x\% \text{ of } y = y\% \text{ of } x
\]
Answer: x
iv. A period of 4 hours 30 min is _______ % of a day.
Step 1: Total minutes in 4 hrs 30 min = 270 min
Step 2: Total minutes in a day = 24 × 60 = 1440 min
\[
\frac{270}{1440} \times 100 = 18.75\%
\]
Answer: 18.75%
v. The number which exceeds 20% of itself by 40, is ______.
Step 1: Let the number be \(x\)
\[
x – \frac{20}{100}x = 40 \\
\Rightarrow \frac{80x}{100} = 40 \\
\Rightarrow x = \frac{40 \times 100}{80} = 50
\]
Answer: 50
vi. If 24-carat gold is 100% pure, then the percentage of pure gold in 22-carat gold is ________.
Step 1:
\[
\frac{22}{24} \times 100 = \frac{275}{3} = 91\frac{2}{3}\%
\]
Answer: \(91 \frac{2}{3}\)%
Q2: Write true (T) or false (F)
i. \(16\frac{2}{3}\%\) = 0.16
Step 1: Convert percentage to decimal:
\[
16\frac{2}{3}\% = \frac{50}{3}\% = \frac{50}{3 \times 100} = \frac{50}{300} \approx 0.1667
\]
So, \(16\frac{2}{3}\% \ne 0.16\)
Answer: False (F)
ii. 5 g is 5% of 1 kg.
Step 1: 1 kg = 1000 g
\[
5\% \text{ of } 1000 = \frac{5}{100} \times 1000 = 50
\]
So, 5 g is not 5% of 1 kg
Answer: False (F)
iii. If we double a number, we increase it by 100%.
Step 1: Let the number be \(x\)
Doubling: \(2x\); increase = \(2x – x = x\)
\[
\text{Percentage increase} = \frac{x}{x} \times 100 = 100\%
\]
Answer: True (T)
iv. 36% when expressed as a ratio is equivalent to 9:50.
Step 1:
\[
36\% = \frac{36}{100} = \frac{9}{25}
\]
But \(9:50 \ne \frac{9}{25}\)
Answer: False (F)
v. If 26% of x = 65, then x = 250
Step 1:
\[
\frac{26}{100} \cdot x = 65 \Rightarrow x = \frac{65 \cdot 100}{26} = 250
\]
Answer: True (T)






Leave a Comment