Natural Numbers and Whole Numbers

natural numbers and whole numbers class 6 selina

Step by Step solutions of Concise Mathematics ICSE Class-6 Maths chapter 4- Natural numbers and Whole numbers by Selina is provided.

Table of Contents

Exercise: 4-C

Q1: Fill in the blanks

i. \(42 \times 0 =\) ________

Step 1: Multiplying any number by 0 gives 0. \[ 42 \times 0 = 0 \] Answer: 0

ii. \(592 \times 1 =\) _______

Step 1: Multiplying any number by 1 gives the number itself. \[ 592 \times 1 = 592 \] Answer: 592

iii. \(328 \times 573 =\) ______ \(\times 328\)

Step 1: By the commutative property of multiplication, \[ 328 \times 573 = 573 \times 328 \] Answer: 573

iv. \(229 \times\) _______ \(= 578 \times 229\)

Step 1: Again, by commutativity, the missing number is 578: \[ 229 \times 578 = 578 \times 229 \] Answer: 578

v. \(32 \times 15 = 32 \times 6 + 32 \times 7 + 32 \times\) _______

Step 1: Sum of 6 and 7 is 13, so to make 15, \[ 15 = 6 + 7 + 2 \] Check that \(6 + 7 + 2 = 15\). Thus, the missing number is 2. Rewrite the multiplication as: \[ 32 \times 15 = 32 \times 6 + 32 \times 7 + 32 \times 2 \] Answer: 2

vi. \(23 \times 56 = 20 \times 56 +\) ________ \(\times 56\)

Step 1: \[ 23 = 20 + 3 \] Therefore, \[ 23 \times 56 = 20 \times 56 + 3 \times 56 \] Answer: 3

vii. \(83 \times 54 + 83 \times 16 = 83 \times (\) ________) \(= 83 \times\) _______ \(= \) _______

Step 1: Use distributive property: \[ 83 \times 54 + 83 \times 16 = 83 \times (54 + 16) \] Calculate sum inside bracket: \[ 54 + 16 = 70 \] Then multiply: \[ 83 \times 70 = 5810 \] Answer: 54 + 16; 70; 5810

viii. \(98 \times 273 – 75 \times 273 =\) (______) \(\times 273 =\) _______ \(\times 273\)

Step 1: By distributive property: \[ 98 \times 273 – 75 \times 273 = (98 – 75) \times 273 \] Calculate inside bracket: \[ 98 – 75 = 23 \] Therefore: \[ = 23 \times 273 \] Answer: 98 – 75; 23


Q2: Evaluate

i. \(984 \times 102\)

Step 1: Express 102 as \(100 + 2\): \[ 984 \times 102 = 984 \times (100 + 2) \]Step 2: Use distributive property: \[ = 984 \times 100 + 984 \times 2 \]Step 3: Calculate each term: \[ 984 \times 100 = 98,400 \] \[ 984 \times 2 = 1,968 \]Step 4: Add the results: \[ 98,400 + 1,968 = 100,368 \]Answer: 100,368

ii. \(385 \times 1004\)

Step 1: Express 1004 as \(1000 + 4\): \[ 385 \times 1004 = 385 \times (1000 + 4) \]Step 2: Use distributive property: \[ = 385 \times 1000 + 385 \times 4 \]Step 3: Calculate each term: \[ 385 \times 1000 = 385,000 \] \[ 385 \times 4 = 1,540 \]Step 4: Add the results: \[ 385,000 + 1,540 = 386,540 \]Answer: 386,540

iii. \(446 \times 10002\)

Step 1: Express 10002 as \(10,000 + 2\): \[ 446 \times 10002 = 446 \times (10,000 + 2) \]Step 2: Use distributive property: \[ = 446 \times 10,000 + 446 \times 2 \]Step 3: Calculate each term: \[ 446 \times 10,000 = 4,460,000 \\ 446 \times 2 = 892 \]Step 4: Add the results: \[ 4,460,000 + 892 = 4,460,892 \]Answer: 4,460,892


Q3: Evaluate using properties:

i. \(548 \times 98\)

Step 1: Express 98 as \(100 – 2\): \[ 548 \times 98 = 548 \times (100 – 2) \]Step 2: Use distributive property: \[ = 548 \times 100 – 548 \times 2 \]Step 3: Calculate each term: \[ 548 \times 100 = 54,800 \] \[ 548 \times 2 = 1,096 \]Step 4: Subtract: \[ 54,800 – 1,096 = 53,704 \]Answer: 53,704

ii. \(924 \times 988\)

Step 1: Express 988 as \(1000 – 12\): \[ 924 \times 988 = 924 \times (1000 – 12) \]Step 2: Use distributive property: \[ = 924 \times 1000 – 924 \times 12 \]Step 3: Calculate each term: \[ 924 \times 1000 = 924,000 \] \[ 924 \times 12 = 11,088 \]Step 4: Subtract: \[ 924,000 – 11,088 = 912,912 \]Answer: 912,912


Q4: Evaluate using properties:

i. \(679 \times 8 + 679 \times 2\)

Step 1: Use distributive property: \[ 679 \times 8 + 679 \times 2 = 679 \times (8 + 2) \]Step 2: Calculate inside the bracket: \[ 8 + 2 = 10 \]Step 3: Multiply: \[ 679 \times 10 = 6,790 \]Answer: 6,790

ii. \(284 \times 12 – 284 \times 2\)

Step 1: Use distributive property: \[ 284 \times 12 – 284 \times 2 = 284 \times (12 – 2) \]Step 2: Calculate inside the bracket: \[ 12 – 2 = 10 \]Step 3: Multiply: \[ 284 \times 10 = 2,840 \]Answer: 2,840

iii. \(55873 \times 94 + 55873 \times 6\)

Step 1: Use distributive property: \[ 55873 \times 94 + 55873 \times 6 = 55873 \times (94 + 6) \]Step 2: Calculate inside the bracket: \[ 94 + 6 = 100 \]Step 3: Multiply: \[ 55873 \times 100 = 5,587,300 \]Answer: 5,587,300

iv. \(7984 \times 15 – 7984 \times 5\)

Step 1: Use distributive property: \[ 7984 \times 15 – 7984 \times 5 = 7984 \times (15 – 5) \]Step 2: Calculate inside the bracket: \[ 15 – 5 = 10 \]Step 3: Multiply: \[ 7984 \times 10 = 79,840 \]Answer: 79,840

v. \(8324 \times 1945 – 8324 \times 945\)

Step 1: Use distributive property: \[ 8324 \times 1945 – 8324 \times 945 = 8324 \times (1945 – 945) \]Step 2: Calculate inside the bracket: \[ 1945 – 945 = 1000 \]Step 3: Multiply: \[ 8324 \times 1000 = 8,324,000 \]Answer: 8,324,000

vi. \(3333 \times 987 + 13 \times 3333\)

Step 1: Rewrite to use distributive property: \[ 3333 \times 987 + 13 \times 3333 = 3333 \times 987 + 3333 \times 13 = 3333 \times (987 + 13) \]Step 2: Calculate inside the bracket: \[ 987 + 13 = 1000 \]Step 3: Multiply: \[ 3333 \times 1000 = 3,333,000 \]Answer: 3,333,000


Q5: Find product of the:

i. greatest number of three digits and smallest number of five digits.

Step 1: Greatest number of three digits = 999
Smallest number of five digits = 10,000
Step 2: Product = \(999 \times 10,000\)
Step 3: Multiply: \[ 999 \times 10,000 = 9,990,000 \]Answer: 9,990,000

ii. greatest number of four digits and the greatest number of three digits.

Step 1: Greatest number of four digits = 9,999
Greatest number of three digits = 999Step 2: Product = \(9,999 \times 999\)Step 3: Calculate \(9,999 \times 999\) by rewriting 999 as \(1000 – 1\): \[ 9,999 \times (1000 – 1) = 9,999 \times 1000 – 9,999 \times 1 = 9,999,000 – 9,999 = 9,989,001 \]Answer: 9,989,001


Q6: Fill in the blanks

i. \((437+3)\times(400-3)=397\times\)_____ =______

Step 1: Calculate the values inside the parentheses: \[ (437 + 3) = 440 \\ (400 – 3) = 397 \]Step 2: Rewrite the expression: \[ (437+3) \times (400-3) = 440 \times 397 \]Step 3: Given in question as: \[ (437+3) \times (400-3) = 397 \times \_\_\_\_ = \_\_\_\_ \]Since multiplication is commutative, \[ 440 \times 397 = 397 \times 440 \]So, the blank is \(440\).
Step 4: Calculate the product \(397 \times 440\): \[ 397 \times 440 = 397 \times (400 + 40) = 397 \times 400 + 397 \times 40 \\ = 158,800 + 15,880 = 174,680 \]Answer: 440 and 174,680

ii. \(66 + 44 + 22 = 11 \times\) (_______) \(= 11 \times\) ______ = ______

Step 1: Factor 11 from each term: \[ 66 = 11 \times 6, \quad 44 = 11 \times 4, \quad 22 = 11 \times 2 \]Step 2: Rewrite sum: \[ 66 + 44 + 22 = 11 \times 6 + 11 \times 4 + 11 \times 2 = 11 \times (6 + 4 + 2) \]Step 3: Calculate inside bracket: \[ 6 + 4 + 2 = 12 \]Step 4: Final multiplication: \[ 11 \times 12 = 132 \]Answer: 6 + 4 + 2, 12, 132


previous
next

Share the Post:

Leave a Comment

Your email address will not be published. Required fields are marked *

Related Posts​

  • Counters and Accumulators in Java
    Counters keep track of how many times an action happens in a program while Accumulators add up values to find a total. Both help Java programs remember and calculate changing numbers during execution.
  • Assignment Operator in Java
    Assignment operators in Java are used to assign or update values in variables. They make code simpler by combining operations and assignments.

Join Our Newsletter

Name
Email
The form has been submitted successfully!
There has been some error while submitting the form. Please verify all form fields again.

Scroll to Top