Exercise: 4-C
Q1: Fill in the blanks
i. \(42 \times 0 =\) ________
Step 1:
Multiplying any number by 0 gives 0.
\[
42 \times 0 = 0
\]
Answer: 0
ii. \(592 \times 1 =\) _______
Step 1:
Multiplying any number by 1 gives the number itself.
\[
592 \times 1 = 592
\]
Answer: 592
iii. \(328 \times 573 =\) ______ \(\times 328\)
Step 1:
By the commutative property of multiplication,
\[
328 \times 573 = 573 \times 328
\]
Answer: 573
iv. \(229 \times\) _______ \(= 578 \times 229\)
Step 1:
Again, by commutativity, the missing number is 578:
\[
229 \times 578 = 578 \times 229
\]
Answer: 578
v. \(32 \times 15 = 32 \times 6 + 32 \times 7 + 32 \times\) _______
Step 1:
Sum of 6 and 7 is 13, so to make 15,
\[
15 = 6 + 7 + 2
\]
Check that \(6 + 7 + 2 = 15\). Thus, the missing number is 2.
Rewrite the multiplication as:
\[
32 \times 15 = 32 \times 6 + 32 \times 7 + 32 \times 2
\]
Answer: 2
vi. \(23 \times 56 = 20 \times 56 +\) ________ \(\times 56\)
Step 1:
\[
23 = 20 + 3
\]
Therefore,
\[
23 \times 56 = 20 \times 56 + 3 \times 56
\]
Answer: 3
vii. \(83 \times 54 + 83 \times 16 = 83 \times (\) ________) \(= 83 \times\) _______ \(= \) _______
Step 1:
Use distributive property:
\[
83 \times 54 + 83 \times 16 = 83 \times (54 + 16)
\]
Calculate sum inside bracket:
\[
54 + 16 = 70
\]
Then multiply:
\[
83 \times 70 = 5810
\]
Answer: 54 + 16; 70; 5810
viii. \(98 \times 273 – 75 \times 273 =\) (______) \(\times 273 =\) _______ \(\times 273\)
Step 1:
By distributive property:
\[
98 \times 273 – 75 \times 273 = (98 – 75) \times 273
\]
Calculate inside bracket:
\[
98 – 75 = 23
\]
Therefore:
\[
= 23 \times 273
\]
Answer: 98 – 75; 23
Q2: Evaluate
i. \(984 \times 102\)
Step 1:
Express 102 as \(100 + 2\):
\[
984 \times 102 = 984 \times (100 + 2)
\]Step 2:
Use distributive property:
\[
= 984 \times 100 + 984 \times 2
\]Step 3:
Calculate each term:
\[
984 \times 100 = 98,400
\]
\[
984 \times 2 = 1,968
\]Step 4:
Add the results:
\[
98,400 + 1,968 = 100,368
\]Answer: 100,368
ii. \(385 \times 1004\)
Step 1:
Express 1004 as \(1000 + 4\):
\[
385 \times 1004 = 385 \times (1000 + 4)
\]Step 2:
Use distributive property:
\[
= 385 \times 1000 + 385 \times 4
\]Step 3:
Calculate each term:
\[
385 \times 1000 = 385,000
\]
\[
385 \times 4 = 1,540
\]Step 4:
Add the results:
\[
385,000 + 1,540 = 386,540
\]Answer: 386,540
iii. \(446 \times 10002\)
Step 1:
Express 10002 as \(10,000 + 2\):
\[
446 \times 10002 = 446 \times (10,000 + 2)
\]Step 2:
Use distributive property:
\[
= 446 \times 10,000 + 446 \times 2
\]Step 3:
Calculate each term:
\[
446 \times 10,000 = 4,460,000 \\
446 \times 2 = 892
\]Step 4:
Add the results:
\[
4,460,000 + 892 = 4,460,892
\]Answer: 4,460,892
Q3: Evaluate using properties:
i. \(548 \times 98\)
Step 1:
Express 98 as \(100 – 2\):
\[
548 \times 98 = 548 \times (100 – 2)
\]Step 2:
Use distributive property:
\[
= 548 \times 100 – 548 \times 2
\]Step 3:
Calculate each term:
\[
548 \times 100 = 54,800
\]
\[
548 \times 2 = 1,096
\]Step 4:
Subtract:
\[
54,800 – 1,096 = 53,704
\]Answer: 53,704
ii. \(924 \times 988\)
Step 1:
Express 988 as \(1000 – 12\):
\[
924 \times 988 = 924 \times (1000 – 12)
\]Step 2:
Use distributive property:
\[
= 924 \times 1000 – 924 \times 12
\]Step 3:
Calculate each term:
\[
924 \times 1000 = 924,000
\]
\[
924 \times 12 = 11,088
\]Step 4:
Subtract:
\[
924,000 – 11,088 = 912,912
\]Answer: 912,912
Q4: Evaluate using properties:
i. \(679 \times 8 + 679 \times 2\)
Step 1:
Use distributive property:
\[
679 \times 8 + 679 \times 2 = 679 \times (8 + 2)
\]Step 2:
Calculate inside the bracket:
\[
8 + 2 = 10
\]Step 3:
Multiply:
\[
679 \times 10 = 6,790
\]Answer: 6,790
ii. \(284 \times 12 – 284 \times 2\)
Step 1:
Use distributive property:
\[
284 \times 12 – 284 \times 2 = 284 \times (12 – 2)
\]Step 2:
Calculate inside the bracket:
\[
12 – 2 = 10
\]Step 3:
Multiply:
\[
284 \times 10 = 2,840
\]Answer: 2,840
iii. \(55873 \times 94 + 55873 \times 6\)
Step 1:
Use distributive property:
\[
55873 \times 94 + 55873 \times 6 = 55873 \times (94 + 6)
\]Step 2:
Calculate inside the bracket:
\[
94 + 6 = 100
\]Step 3:
Multiply:
\[
55873 \times 100 = 5,587,300
\]Answer: 5,587,300
iv. \(7984 \times 15 – 7984 \times 5\)
Step 1:
Use distributive property:
\[
7984 \times 15 – 7984 \times 5 = 7984 \times (15 – 5)
\]Step 2:
Calculate inside the bracket:
\[
15 – 5 = 10
\]Step 3:
Multiply:
\[
7984 \times 10 = 79,840
\]Answer: 79,840
v. \(8324 \times 1945 – 8324 \times 945\)
Step 1:
Use distributive property:
\[
8324 \times 1945 – 8324 \times 945 = 8324 \times (1945 – 945)
\]Step 2:
Calculate inside the bracket:
\[
1945 – 945 = 1000
\]Step 3:
Multiply:
\[
8324 \times 1000 = 8,324,000
\]Answer: 8,324,000
vi. \(3333 \times 987 + 13 \times 3333\)
Step 1:
Rewrite to use distributive property:
\[
3333 \times 987 + 13 \times 3333 = 3333 \times 987 + 3333 \times 13 = 3333 \times (987 + 13)
\]Step 2:
Calculate inside the bracket:
\[
987 + 13 = 1000
\]Step 3:
Multiply:
\[
3333 \times 1000 = 3,333,000
\]Answer: 3,333,000
Q5: Find product of the:
i. greatest number of three digits and smallest number of five digits.
Step 1: Greatest number of three digits = 999
Smallest number of five digits = 10,000
Step 2: Product = \(999 \times 10,000\)
Step 3: Multiply:
\[
999 \times 10,000 = 9,990,000
\]Answer: 9,990,000
ii. greatest number of four digits and the greatest number of three digits.
Step 1:
Greatest number of four digits = 9,999
Greatest number of three digits = 999Step 2:
Product = \(9,999 \times 999\)Step 3:
Calculate \(9,999 \times 999\) by rewriting 999 as \(1000 – 1\):
\[
9,999 \times (1000 – 1) = 9,999 \times 1000 – 9,999 \times 1 = 9,999,000 – 9,999 = 9,989,001
\]Answer: 9,989,001
Q6: Fill in the blanks
i. \((437+3)\times(400-3)=397\times\)_____ =______
Step 1:
Calculate the values inside the parentheses:
\[
(437 + 3) = 440 \\
(400 – 3) = 397
\]Step 2:
Rewrite the expression:
\[
(437+3) \times (400-3) = 440 \times 397
\]Step 3:
Given in question as:
\[
(437+3) \times (400-3) = 397 \times \_\_\_\_ = \_\_\_\_
\]Since multiplication is commutative,
\[
440 \times 397 = 397 \times 440
\]So, the blank is \(440\).
Step 4:
Calculate the product \(397 \times 440\):
\[
397 \times 440 = 397 \times (400 + 40) = 397 \times 400 + 397 \times 40 \\
= 158,800 + 15,880 = 174,680
\]Answer: 440 and 174,680
ii. \(66 + 44 + 22 = 11 \times\) (_______) \(= 11 \times\) ______ = ______
Step 1:
Factor 11 from each term:
\[
66 = 11 \times 6, \quad 44 = 11 \times 4, \quad 22 = 11 \times 2
\]Step 2:
Rewrite sum:
\[
66 + 44 + 22 = 11 \times 6 + 11 \times 4 + 11 \times 2 = 11 \times (6 + 4 + 2)
\]Step 3:
Calculate inside bracket:
\[
6 + 4 + 2 = 12
\]Step 4:
Final multiplication:
\[
11 \times 12 = 132
\]Answer: 6 + 4 + 2, 12, 132