Identities

identities class 8 selina

Step by Step solutions of Exercise- 12A Concise Mathematics ICSE Class-8 Maths chapter 12- Identities by Selina is provided.

Exercise: 12-A

Q1: Multiple Choice Type:

i. \(\left(x+2y\right)^2+\left(x-2y\right)^2\) is equal to:

Step 1: Expand each square using \((p+q)^2 = p^2 + 2pq + q^2\) and \((p-q)^2 = p^2 – 2pq + q^2\)
\((x+2y)^2 = x^2 + 4xy + 4y^2\)
\((x-2y)^2 = x^2 – 4xy + 4y^2\)
Step 2: Add the two expressions
\((x+2y)^2 + (x-2y)^2 = (x^2 + 4xy + 4y^2) + (x^2 – 4xy + 4y^2) = 2x^2 + 8y^2\)
Answer: c. \(2x^2 + 8y^2\)

ii. \(\left(a+b\right)\left(a-b\right)+\left(b-c\right)\left(b+c\right)+\left(c+a\right)\left(c-a\right)\) is equal to:

Step 1: Use the identity \((p+q)(p-q) = p^2 – q^2\)
\((a+b)(a-b) = a^2 – b^2\)
\((b-c)(b+c) = b^2 – c^2\)
\((c+a)(c-a) = c^2 – a^2\)
Step 2: Add all terms
\((a^2 – b^2) + (b^2 – c^2) + (c^2 – a^2) = 0\)
Answer: c. 0

iii. \(\left(3x-4y\right)^2-\left(3x+4y\right)^2\) is equal to:

Step 1: Use the identity \((p-q)^2 – (p+q)^2 = -4pq\)
\((3x-4y)^2 – (3x+4y)^2 = -4 \cdot (3x) \cdot (4y) = -48xy\)
Answer: c. -48xy

iv. The value of \(\left(0.8\right)^2-0.32+\left(0.2\right)^2\) is equal to:

Step 1: Calculate squares
\((0.8)^2 = 0.64\), \((0.2)^2 = 0.04\)
Step 2: Substitute and simplify
\(0.64 – 0.32 + 0.04 = 0.36\)
Answer: c. 0.36

v. The value of \(\left(a-b-c\right)\left(a-b+c\right)\) is:

Step 1: Use identity \((p-q)(p+q) = p^2 – q^2\) with \(p = a-b\) and \(q = c\)
\((a-b-c)(a-b+c) = (a-b)^2 – c^2\)
Step 2: Expand \((a-b)^2 – c^2\)
\((a-b)^2 – c^2 = a^2 – 2ab + b^2 – c^2 = a^2 + b^2 – c^2 – 2ab\)
Answer: b. \(a^2 + b^2 – c^2 – 2ab\)


Q2: Use direct method evaluate the following product:

i. \((a-8)(a+2)\)

Step 1: Apply distributive property: \((p+q)(r+s) = pr + ps + qr + qs\)
\((a-8)(a+2) = a\cdot a + a\cdot 2 + (-8)\cdot a + (-8)\cdot 2\)
Step 2: Simplify each term
\(a^2 + 2a – 8a – 16\)
Step 3: Combine like terms
\(a^2 – 6a – 16\)
Answer:\(a^2 – 6a – 16\)

ii. \((b-3)(b-5)\)

Step 1: Apply distributive property
\((b-3)(b-5) = b\cdot b + b\cdot (-5) + (-3)\cdot b + (-3)\cdot (-5)\)
Step 2: Simplify each term
\(b^2 – 5b – 3b + 15\)
Step 3: Combine like terms
\(b^2 – 8b + 15\)
Answer:\(b^2 – 8b + 15\)

iii. \((3x-2y)(2x+y)\)

Step 1: Apply distributive property
\((3x-2y)(2x+y) = 3x\cdot 2x + 3x\cdot y + (-2y)\cdot 2x + (-2y)\cdot y\)
Step 2: Simplify each term
\(6x^2 + 3xy – 4xy – 2y^2\)
Step 3: Combine like terms
\(6x^2 – xy – 2y^2\)
Answer:\(6x^2 – xy – 2y^2\)

iv. \((5a+16)(3a-7)\)

Step 1: Apply distributive property
\((5a+16)(3a-7) = 5a\cdot 3a + 5a\cdot (-7) + 16\cdot 3a + 16\cdot (-7)\)
Step 2: Simplify each term
\(15a^2 – 35a + 48a – 112\)
Step 3: Combine like terms
\(15a^2 + 13a – 112\)
Answer:\(15a^2 + 13a – 112\)

v. \((8-b)(3+b)\)

Step 1: Apply distributive property
\((8-b)(3+b) = 8\cdot 3 + 8\cdot b + (-b)\cdot 3 + (-b)\cdot b\)
Step 2: Simplify each term
\(24 + 8b – 3b – b^2\)
Step 3: Combine like terms
\(-b^2 + 5b + 24\)
Answer:\(-b^2 + 5b + 24\)


Q3: Evaluate:

i. \((2a+3)(2a-3)\)

Step 1: Apply the identity \((p+q)(p-q) = p^2 – q^2\)
Here, \(p = 2a\), \(q = 3\)
\((2a+3)(2a-3) = (2a)^2 – 3^2\)
Step 2: Simplify
\(4a^2 – 9\)
Answer:\(4a^2 – 9\)

ii. \((xy+4)(xy-4)\)

Step 1: Apply \((p+q)(p-q) = p^2 – q^2\), \(p = xy, q = 4\)
\((xy+4)(xy-4) = (xy)^2 – 16 = x^2y^2 – 16\)
Answer:\(x^2y^2 – 16\)

iii. \((ab + x^2)(ab – x^2)\)

Step 1: Apply identity with \(p = ab, q = x^2\)
\((ab + x^2)(ab – x^2) = (ab)^2 – (x^2)^2\)
Step 2: Simplify
\(a^2b^2 – x^4\)
Answer:\(a^2b^2 – x^4\)

iv. \((3x^2 + 5y^2)(3x^2 – 5y^2)\)

Step 1: Apply identity \((p+q)(p-q) = p^2 – q^2\), \(p = 3x^2, q = 5y^2\)
\((3x^2 + 5y^2)(3x^2 – 5y^2) = (3x^2)^2 – (5y^2)^2\)
Step 2: Simplify
\(9x^4 – 25y^4\)
Answer:\(9x^4 – 25y^4\)

v. \(\left(z – \frac{2}{3}\right)\left(z + \frac{2}{3}\right)\)

Step 1: Apply \((p+q)(p-q) = p^2 – q^2\), \(p = z, q = \frac{2}{3}\)
\(\left(z – \frac{2}{3}\right)\left(z + \frac{2}{3}\right) = z^2 – \left(\frac{2}{3}\right)^2\)
Step 2: Simplify
\(z^2 – \frac{4}{9}\)
Answer:\(z^2 – \frac{4}{9}\)

vi. \(\left(\frac{3}{5}a + \frac{1}{2}\right)\left(\frac{3}{5}a – \frac{1}{2}\right)\)

Step 1: Use \((p+q)(p-q) = p^2 – q^2\), \(p = \frac{3}{5}a, q = \frac{1}{2}\)
\(\left(\frac{3}{5}a + \frac{1}{2}\right)\left(\frac{3}{5}a – \frac{1}{2}\right) = \left(\frac{3}{5}a\right)^2 – \left(\frac{1}{2}\right)^2\)
Step 2: Simplify
\(\frac{9}{25}a^2 – \frac{1}{4}\)
Answer:\( \frac{9}{25} a^2 – \frac{1}{4}\)

vii. \((0.5 – 2a)(0.5 + 2a)\)

Step 1: Apply \((p+q)(p-q) = p^2 – q^2\), \(p = 0.5, q = 2a\)
\((0.5 – 2a)(0.5 + 2a) = (0.5)^2 – (2a)^2\)
Step 2: Simplify
\(0.25 – 4a^2\)
Answer:\(0.25 – 4a^2\)

viii. \(\left(\frac{a}{2} – \frac{b}{3}\right)\left(\frac{a}{2} + \frac{b}{3}\right)\)

Step 1: Apply identity \((p-q)(p+q) = p^2 – q^2\), \(p = \frac{a}{2}, q = \frac{b}{3}\)
\(\left(\frac{a}{2} – \frac{b}{3}\right)\left(\frac{a}{2} + \frac{b}{3}\right) = \left(\frac{a}{2}\right)^2 – \left(\frac{b}{3}\right)^2\)
Step 2: Simplify
\(\frac{a^2}{4} – \frac{b^2}{9}\)
Answer:\(\frac{a^2}{4} – \frac{b^2}{9}\)


Q4: Evaluate:

i. \((a+b)(a-b)(a^2+b^2)\)

Step 1: First, use the identity \((a+b)(a-b) = a^2 – b^2\)
\((a+b)(a-b)(a^2+b^2) = (a^2 – b^2)(a^2 + b^2)\)
Step 2: Apply the difference of squares again: \((p-q)(p+q) = p^2 – q^2\)
Here, \(p = a^2\), \(q = b^2\)
\((a^2 – b^2)(a^2 + b^2) = (a^2)^2 – (b^2)^2 = a^4 – b^4\)
Answer:\(a^4 – b^4\)

ii. \((3-2x)(3+2x)(9+4x^2)\)

Step 1: Use identity \((p+q)(p-q) = p^2 – q^2\) for the first two terms:
\((3-2x)(3+2x) = 3^2 – (2x)^2 = 9 – 4x^2\)
Step 2: Multiply by the third term:
\((9 – 4x^2)(9 + 4x^2)\)
Step 3: Apply difference of squares again:
\(9^2 – (4x^2)^2 = 81 – 16x^4\)
Answer:\(81 – 16x^4\)

iii. \((3x-4y)(3x+4y)(9x^2+16y^2)\)

Step 1: Use identity \((p+q)(p-q) = p^2 – q^2\) for the first two terms:
\((3x-4y)(3x+4y) = (3x)^2 – (4y)^2 = 9x^2 – 16y^2\)
Step 2: Multiply by the third term:
\((9x^2 – 16y^2)(9x^2 + 16y^2)\)
Step 3: Apply difference of squares again:
\((9x^2)^2 – (16y^2)^2 = 81x^4 – 256y^4\)
Answer:\(81x^4 – 256y^4\)


Q5: Use the formula: \(\left(a+b\right)\left(a-b\right)=a^2-b^2\) to evaluate:

i. 21 × 19

Step 1: Express numbers in the form \(a+b\) and \(a-b\):
21 = 20 + 1, 19 = 20 – 1
So, 21 × 19 = (20 + 1)(20 – 1)
Step 2: Apply the identity \((a+b)(a-b) = a^2 – b^2\)
(20 + 1)(20 – 1) = 20^2 – 1^2
Step 3: Simplify
400 – 1 = 399
Answer:399

ii. 33 × 27

Step 1: Express in the form \(a+b\) and \(a-b\):
33 = 30 + 3, 27 = 30 – 3
So, 33 × 27 = (30 + 3)(30 – 3)
Step 2: Apply identity
(30 + 3)(30 – 3) = 30^2 – 3^2
Step 3: Simplify
900 – 9 = 891
Answer:891

iii. 103 × 97

Step 1: Express in the form \(a+b\) and \(a-b\):
103 = 100 + 3, 97 = 100 – 3
So, 103 × 97 = (100 + 3)(100 – 3)
Step 2: Apply identity
(100 + 3)(100 – 3) = 100^2 – 3^2
Step 3: Simplify
10000 – 9 = 9991
Answer:9991

iv. 9.8 × 10.2

Step 1: Express in the form \(a+b\) and \(a-b\):
9.8 = 10 – 0.2, 10.2 = 10 + 0.2
So, 9.8 × 10.2 = (10 – 0.2)(10 + 0.2)
Step 2: Apply identity
(10 – 0.2)(10 + 0.2) = 10^2 – (0.2)^2
Step 3: Simplify
100 – 0.04 = 99.96
Answer:99.96

v. 7.7 × 8.3

Step 1: Express in the form \(a+b\) and \(a-b\):
7.7 = 8 – 0.3, 8.3 = 8 + 0.3
So, 7.7 × 8.3 = (8 – 0.3)(8 + 0.3)
Step 2: Apply identity
(8 – 0.3)(8 + 0.3) = 8^2 – (0.3)^2
Step 3: Simplify
64 – 0.09 = 63.91
Answer:63.91


Q6: Evaluate:

i. \( (6 – xy)(6 + xy) \)

Step 1: Apply identity \( (a+b)(a-b) = a^2 – b^2 \)
Step 2: \( (6 – xy)(6 + xy) = 6^2 – (xy)^2 \)
Answer:\( 36 – x^2y^2 \)

ii. \( \left(7x + \frac{2}{3}y\right)\left(7x – \frac{2}{3}y\right) \)

Step 1: Apply identity \( (a+b)(a-b) = a^2 – b^2 \)
Step 2: \( (7x + \frac{2}{3}y)(7x – \frac{2}{3}y) = (7x)^2 – (\frac{2}{3}y)^2 \)
Answer:\( 49x^2 – \frac{4}{9}y^2 \)

iii. \( \left(\frac{a}{2b} + \frac{2b}{a}\right)\left(\frac{a}{2b} – \frac{2b}{a}\right) \)

Step 1: Apply identity \( (a+b)(a-b) = a^2 – b^2 \)
Step 2: \( \left(\frac{a}{2b} + \frac{2b}{a}\right)\left(\frac{a}{2b} – \frac{2b}{a}\right) = \left(\frac{a}{2b}\right)^2 – \left(\frac{2b}{a}\right)^2 \)
Answer:\( \frac{a^2}{4b^2} – \frac{4b^2}{a^2} \)

iv. \( \left(3x – \frac{1}{2y}\right)\left(3x + \frac{1}{2y}\right) \)

Step 1: Apply identity \( (a+b)(a-b) = a^2 – b^2 \)
Step 2: \( (3x – \frac{1}{2y})(3x + \frac{1}{2y}) = (3x)^2 – (\frac{1}{2y})^2 \)
Answer:\( 9x^2 – \frac{1}{4y^2} \)

v. \( (2a+3)(2a-3)(4a^2+9) \)

Step 1: First, \( (2a+3)(2a-3) = (2a)^2 – 3^2 = 4a^2 – 9 \)
Step 2: Multiply by \( (4a^2 + 9) \): \( (4a^2 – 9)(4a^2 + 9) \)
Step 3: Apply difference of squares: \( (4a^2)^2 – 9^2 = 16a^4 – 81 \)
Answer:\( 16a^4 – 81 \)

vi. \( (a+bc)(a-bc)(a^2+b^2c^2) \)

Step 1: First, \( (a+bc)(a-bc) = a^2 – b^2c^2 \)
Step 2: Multiply by \( (a^2+b^2c^2) \): \( (a^2 – b^2c^2)(a^2 + b^2c^2) \)
Step 3: Apply difference of squares: \( (a^2)^2 – (b^2c^2)^2 = a^4 – b^4c^4 \)
Answer:\( a^4 – b^4c^4 \)


Q7: Expand:

i. \( \left(a + \frac{1}{2a}\right)^2 \)

Step 1: Apply identity \( (p+q)^2 = p^2 + 2pq + q^2 \), \( p = a, q = \frac{1}{2a} \)
Step 2: \( \left(a + \frac{1}{2a}\right)^2 = a^2 + 2\left(a \cdot \frac{1}{2a}\right) + \left(\frac{1}{2a}\right)^2 \)
Step 3: Simplify: \( a^2 + 1 + \frac{1}{4a^2}\)
Answer:\( a^2 + 1 + \frac{1}{4a^2} \)

ii. \( \left(2a – \frac{1}{a}\right)^2 \)

Step 1: Apply \( (p-q)^2 = p^2 – 2pq + q^2 \), \( p=2a, q = \frac{1}{a} \)
Step 2: \( (2a – \frac{1}{a})^2 = (2a)^2 – 2(2a \cdot \frac{1}{a}) + (\frac{1}{a})^2 \)
Step 3: Simplify: \( 4a^2 – 4 + \frac{1}{a^2} \)
Answer:\( 4a^2 – 4 + \frac{1}{a^2} \)

iii. \( (a+b-c)^2 \)

Step 1: Apply \( (p+q+r)^2 = p^2 + q^2 + r^2 + 2pq + 2pr + 2qr \), \( p=a, q=b, r=-c \)
Step 2: \( (a+b-c)^2 = a^2 + b^2 + (-c)^2 + 2ab + 2a(-c) + 2b(-c) \)
Step 3: Simplify: \( a^2 + b^2 + c^2 + 2ab – 2ac – 2bc \)
Answer:\( a^2 + b^2 + c^2 + 2ab – 2ac – 2bc \)

iv. \( (a-b+c)^2 \)

Step 1: Apply \( (p+q+r)^2 \), \( p=a, q=-b, r=c \)
Step 2: \( (a-b+c)^2 = a^2 + (-b)^2 + c^2 + 2a(-b) + 2a(c) + 2(-b)(c) \)
Step 3: Simplify: \( a^2 + b^2 + c^2 – 2ab + 2ac – 2bc \)
Answer:\( a^2 + b^2 + c^2 – 2ab + 2ac – 2bc \)

v. \( \left(3x + \frac{1}{3x}\right)^2 \)

Step 1: Apply \( (p+q)^2 = p^2 + 2pq + q^2 \), \( p=3x, q=\frac{1}{3x} \)
Step 2: \( (3x + \frac{1}{3x})^2 = (3x)^2 + 2(3x \cdot \frac{1}{3x}) + (\frac{1}{3x})^2 \)
Step 3: Simplify: \( 9x^2 + 2 + \frac{1}{9x^2} \)
Answer:\( 9x^2 + 2 + \frac{1}{9x^2} \)


Q8: Find the square of:

i. \( a + \frac{1}{5a} \)

Step 1: Apply identity \( (p+q)^2 = p^2 + 2pq + q^2 \), \( p = a, q = \frac{1}{5a} \)
Step 2: \( \left(a + \frac{1}{5a}\right)^2 = a^2 + 2\left(a \cdot \frac{1}{5a}\right) + \left(\frac{1}{5a}\right)^2 \)
Step 3: Simplify: \( a^2 + \frac{2}{5} + \frac{1}{25a^2} \)
Answer:\( a^2 + \frac{2}{5} + \frac{1}{25a^2} \)

ii. \( 2a – \frac{1}{a} \)

Step 1: Apply identity \( (p-q)^2 = p^2 – 2pq + q^2 \), \( p=2a, q=\frac{1}{a} \)
Step 2: \( \left(2a – \frac{1}{a}\right)^2 = (2a)^2 – 2(2a \cdot \frac{1}{a}) + \left(\frac{1}{a}\right)^2 \)
Step 3: Simplify: \( 4a^2 – 4 + \frac{1}{a^2} \)
Answer:\( 4a^2 – 4 + \frac{1}{a^2} \)

iii. \( x – 2y + 1 \)

Step 1: Apply identity \( (p+q+r)^2 = p^2 + q^2 + r^2 + 2pq + 2pr + 2qr \), \( p=x, q=-2y, r=1 \)
Step 2: \( (x – 2y + 1)^2 = x^2 + (-2y)^2 + 1^2 + 2(x \cdot -2y) + 2(x \cdot 1) + 2(-2y \cdot 1) \)
Step 3: Simplify: \( x^2 + 4y^2 + 1 – 4xy + 2x – 4y \)
Answer:\( x^2 + 4y^2 + 1 – 4xy + 2x – 4y \)

iv. \( 3a – 2b – 5c \)

Step 1: Apply \( (p+q+r)^2 \), \( p=3a, q=-2b, r=-5c \)
Step 2: \( (3a – 2b – 5c)^2 = (3a)^2 + (-2b)^2 + (-5c)^2 + 2(3a \cdot -2b) + 2(3a \cdot -5c) + 2(-2b \cdot -5c) \)
Step 3: Simplify: \( 9a^2 + 4b^2 + 25c^2 – 12ab – 30ac + 20bc \)
Answer:\( 9a^2 + 4b^2 + 25c^2 – 12ab – 30ac + 20bc \)

v. \( 2x + \frac{1}{x} + 1 \)

Step 1: Apply \( (p+q+r)^2 \), \( p=2x, q=\frac{1}{x}, r=1 \)
Step 2: \( (2x + \frac{1}{x} + 1)^2 = (2x)^2 + (\frac{1}{x})^2 + 1^2 + 2(2x \cdot \frac{1}{x}) + 2(2x \cdot 1) + 2(\frac{1}{x} \cdot 1) \)
Step 3: Simplify: \( 4x^2 + \frac{1}{x^2} + 1 + 4 + 4x + \frac{2}{x} = 4x^2 + \frac{1}{x^2} + 4x + \frac{2}{x} + 5 \)
Answer:\( 4x^2 + \frac{1}{x^2} + 4x + \frac{2}{x} + 5 \)

vi. \( 5 – x + \frac{2}{x} \)

Step 1: Apply \( (p+q+r)^2 \), \( p=5, q=-x, r=\frac{2}{x} \)
Step 2: \( (5 – x + \frac{2}{x})^2 = 5^2 + (-x)^2 + (\frac{2}{x})^2 + 2(5 \cdot -x) + 2(5 \cdot \frac{2}{x}) + 2(-x \cdot \frac{2}{x}) \)
Step 3: Simplify: \( 25 + x^2 + \frac{4}{x^2} – 10x + \frac{20}{x} – 4 = x^2 + \frac{4}{x^2} – 10x + \frac{20}{x} + 21 \)
Answer:\( x^2 + \frac{4}{x^2} – 10x + \frac{20}{x} + 21 \)

vii. \( 2x – 3y + z \)

Step 1: Apply \( (p+q+r)^2 \), \( p=2x, q=-3y, r=z \)
Step 2: \( (2x – 3y + z)^2 = (2x)^2 + (-3y)^2 + z^2 + 2(2x \cdot -3y) + 2(2x \cdot z) + 2(-3y \cdot z) \)
Step 3: Simplify: \( 4x^2 + 9y^2 + z^2 – 12xy + 4xz – 6yz \)
Answer:\( 4x^2 + 9y^2 + z^2 – 12xy + 4xz – 6yz \)

viii. \( x + \frac{1}{x} – 1 \)

Step 1: Apply \( (p+q+r)^2 \), \( p=x, q=\frac{1}{x}, r=-1 \)
Step 2: \( (x + \frac{1}{x} – 1)^2 = x^2 + (\frac{1}{x})^2 + (-1)^2 + 2(x \cdot \frac{1}{x}) + 2(x \cdot -1) + 2(\frac{1}{x} \cdot -1) \)
Step 3: Simplify: \( x^2 + \frac{1}{x^2} + 1 + 2 – 2x – \frac{2}{x} = x^2 + \frac{1}{x^2} – 2x – \frac{2}{x} + 3 \)
Answer:\( x^2 + \frac{1}{x^2} – 2x – \frac{2}{x} + 3 \)


Q9: Evaluate using expression of \(\left(a+b\right)^2\) or \(\left(a-b\right)^2\):

i. \( 208^2 \)

Step 1: Express \(208 = 200 + 8\)
Step 2: Apply identity \( (a+b)^2 = a^2 + 2ab + b^2 \), \( a=200, b=8 \)
Step 3: \( 208^2 = 200^2 + 2 \cdot 200 \cdot 8 + 8^2 \)
Step 4: \( 208^2 = 40000 + 3200 + 64 \)
Answer:43264

ii. \( 92^2 \)

Step 1: Express \(92 = 100 – 8\)
Step 2: Apply identity \( (a-b)^2 = a^2 – 2ab + b^2 \), \( a=100, b=8 \)
Step 3: \( 92^2 = 100^2 – 2 \cdot 100 \cdot 8 + 8^2 \)
Step 4: \( 92^2 = 10000 – 1600 + 64 \)
Answer:8464

iii. \( 9.4^2 \)

Step 1: Express \(9.4 = 10 – 0.6\)
Step 2: Apply identity \( (a-b)^2 = a^2 – 2ab + b^2 \), \( a=10, b=0.6 \)
Step 3: \( 9.4^2 = 10^2 – 2 \cdot 10 \cdot 0.6 + 0.6^2 \)
Step 4: \( 9.4^2 = 100 – 12 + 0.36 \)
Answer:88.36

iv. \( 20.7^2 \)

Step 1: Express \(20.7 = 20 + 0.7\)
Step 2: Apply identity \( (a+b)^2 = a^2 + 2ab + b^2 \), \( a=20, b=0.7 \)
Step 3: \( 20.7^2 = 20^2 + 2 \cdot 20 \cdot 0.7 + 0.7^2 \)
Step 4: \( 20.7^2 = 400 + 28 + 0.49 \)
Answer:428.49


Q10: Expand:

i. \( (2a+b)^3 \)

Step 1: Apply identity \( (p+q)^3 = p^3 + 3p^2q + 3pq^2 + q^3 \), \( p=2a, q=b \)
Step 2: \( (2a+b)^3 = (2a)^3 + 3(2a)^2b + 3(2a)b^2 + b^3 \)
Step 3: Simplify each term: \( 8a^3 + 12a^2b + 6ab^2 + b^3 \)
Answer:\(8a^3 + 12a^2b + 6ab^2 + b^3\)

ii. \( (a-2b)^3 \)

Step 1: Apply identity \( (p-q)^3 = p^3 – 3p^2q + 3pq^2 – q^3 \), \( p=a, q=2b \)
Step 2: \( (a-2b)^3 = a^3 – 3a^2(2b) + 3a(2b)^2 – (2b)^3 \)
Step 3: Simplify: \( a^3 – 6a^2b + 12ab^2 – 8b^3 \)
Answer:\(a^3 – 6a^2b + 12ab^2 – 8b^3\)

iii. \( (3x-2y)^3 \)

Step 1: Apply identity \( (p-q)^3 = p^3 – 3p^2q + 3pq^2 – q^3 \), \( p=3x, q=2y \)
Step 2: \( (3x-2y)^3 = (3x)^3 – 3(3x)^2(2y) + 3(3x)(2y)^2 – (2y)^3 \)
Step 3: Simplify: \( 27x^3 – 54x^2y + 36xy^2 – 8y^3 \)
Answer:\(27x^3 – 54x^2y + 36xy^2 – 8y^3\)

iv. \( (x+5y)^3 \)

Step 1: Apply identity \( (p+q)^3 = p^3 + 3p^2q + 3pq^2 + q^3 \), \( p=x, q=5y \)
Step 2: \( (x+5y)^3 = x^3 + 3x^2(5y) + 3x(5y)^2 + (5y)^3 \)
Step 3: Simplify: \( x^3 + 15x^2y + 75xy^2 + 125y^3 \)
Answer:\(x^3 + 15x^2y + 75xy^2 + 125y^3\)

v. \( \left(a+\frac{1}{a}\right)^3 \)

Step 1: Apply identity \( (p+q)^3 = p^3 + 3p^2q + 3pq^2 + q^3 \), \( p=a, q=\frac{1}{a} \)
Step 2: \( \left(a+\frac{1}{a}\right)^3 = a^3 + 3a^2(\frac{1}{a}) + 3a(\frac{1}{a})^2 + (\frac{1}{a})^3 \)
Step 3: Simplify: \( a^3 + 3a + \frac{3}{a} + \frac{1}{a^3} \)
Answer:\(a^3 + 3a + \frac{3}{a} + \frac{1}{a^3}\)

vi. \( \left(2a-\frac{1}{2a}\right)^3 \)

Step 1: Apply identity \( (p-q)^3 = p^3 – 3p^2q + 3pq^2 – q^3 \), \( p=2a, q=\frac{1}{2a} \)
Step 2: \( \left(2a-\frac{1}{2a}\right)^3 = (2a)^3 – 3(2a)^2(\frac{1}{2a}) + 3(2a)(\frac{1}{2a})^2 – (\frac{1}{2a})^3 \)
Step 3: Simplify: \( 8a^3 – 6a + \frac{3}{2a} – \frac{1}{8a^3} \)
Answer:\(8a^3 – 6a + \frac{3}{2a} – \frac{1}{8a^3}\)


Q11: Find the cube of:

i. \( (a+2)^3 \)

Step 1: Apply identity \( (p+q)^3 = p^3 + 3p^2q + 3pq^2 + q^3 \), \( p=a, q=2 \)
Step 2: \( (a+2)^3 = a^3 + 3a^2\cdot2 + 3a\cdot2^2 + 2^3 \)
Step 3: Simplify: \( a^3 + 6a^2 + 12a + 8 \)
Answer:\(a^3 + 6a^2 + 12a + 8\)

ii. \( (2a-1)^3 \)

Step 1: Apply identity \( (p-q)^3 = p^3 – 3p^2q + 3pq^2 – q^3 \), \( p=2a, q=1 \)
Step 2: \( (2a-1)^3 = (2a)^3 – 3(2a)^2\cdot1 + 3(2a)\cdot1^2 – 1^3 \)
Step 3: Simplify: \( 8a^3 – 12a^2 + 6a – 1 \)
Answer:\(8a^3 – 12a^2 + 6a – 1\)

iii. \( (2a+3b)^3 \)

Step 1: Apply identity \( (p+q)^3 = p^3 + 3p^2q + 3pq^2 + q^3 \), \( p=2a, q=3b \)
Step 2: \( (2a+3b)^3 = (2a)^3 + 3(2a)^2(3b) + 3(2a)(3b)^2 + (3b)^3 \)
Step 3: Simplify: \( 8a^3 + 36a^2b + 54ab^2 + 27b^3 \)
Answer:\(8a^3 + 36a^2b + 54ab^2 + 27b^3\)

iv. \( (3b-2a)^3 \)

Step 1: Apply identity \( (p-q)^3 = p^3 – 3p^2q + 3pq^2 – q^3 \), \( p=3b, q=2a \)
Step 2: \( (3b-2a)^3 = (3b)^3 – 3(3b)^2(2a) + 3(3b)(2a)^2 – (2a)^3 \)
Step 3: Simplify: \( 27b^3 – 54b^2a + 36ba^2 – 8a^3 \)
Answer:\(27b^3 – 54b^2a + 36ba^2 – 8a^3\)

v. \( \left(2x+\frac{1}{x}\right)^3 \)

Step 1: Apply identity \( (p+q)^3 = p^3 + 3p^2q + 3pq^2 + q^3 \), \( p=2x, q=\frac{1}{x} \)
Step 2: \( \left(2x+\frac{1}{x}\right)^3 = (2x)^3 + 3(2x)^2(\frac{1}{x}) + 3(2x)(\frac{1}{x})^2 + (\frac{1}{x})^3 \)
Step 3: Simplify: \( 8x^3 + 12x + \frac{6}{x} + \frac{1}{x^3} \)
Answer:\(8x^3 + 12x + \frac{6}{x} + \frac{1}{x^3}\)

vi. \( \left(x-\frac{1}{2}\right)^3 \)

Step 1: Apply identity \( (p-q)^3 = p^3 – 3p^2q + 3pq^2 – q^3 \), \( p=x, q=\frac{1}{2} \)
Step 2: \( \left(x-\frac{1}{2}\right)^3 = x^3 – 3x^2(\frac{1}{2}) + 3x(\frac{1}{2})^2 – (\frac{1}{2})^3 \)
Step 3: Simplify: \( x^3 – \frac{3}{2}x^2 + \frac{3}{4}x – \frac{1}{8} \)
Answer:\(x^3 – \frac{3}{2}x^2 + \frac{3}{4}x – \frac{1}{8}\)


previous
next

Share the Post:

Leave a Comment

Your email address will not be published. Required fields are marked *

Related Posts​

Number System

Number System

Step by Step solutions of RS Aggarwal ICSE Class-6 Maths chapter 1- Number System by...
Read More

Join Our Newsletter

Name
Email
The form has been submitted successfully!
There has been some error while submitting the form. Please verify all form fields again.
Scroll to Top