Factorization

factorization class 8 rs aggarwal

Step by Step solutions of Exercise- 14C of RS Aggarwal ICSE Class-8 Maths chapter 14- Factorization by Goyal Brothers Prakashan is provided.

Exercise: 14C

Q1: x² − 81

Step 1: Recognize the form:
x² − 81 = x² − 9²
Step 2: Apply the identity A² − B² = (A − B)(A + B).
Here, A = x and B = 9
Step 3: Write the factors:
= (x − 9)(x + 9)
Answer: (x − 9)(x + 9)


Q2: 9a² − 25

Step 1: Recognize the form:
9a² − 25 = (3a)² − 5²
Step 2: Apply the identity A² − B² = (A − B)(A + B).
Here, A = 3a and B = 5
Step 3: Write the factors:
= (3a − 5)(3a + 5)
Answer: (3a − 5)(3a + 5)


Q3: 36y² − 121

Step 1: Recognize the form:
36y² − 121 = (6y)² − 11²
Step 2: Apply the identity A² − B² = (A − B)(A + B).
Here, A = 6y and B = 11
Step 3: Write the factors:
= (6y − 11)(6y + 11)
Answer: (6y − 11)(6y + 11)


Q4: 49a² − 100b²

Step 1: Recognize the form:
49a² − 100b² = (7a)² − (10b)²
Step 2: Apply the identity A² − B² = (A − B)(A + B).
Here, A = 7a and B = 10b
Step 3: Write the factors:
= (7a − 10b)(7a + 10b)
Answer: (7a − 10b)(7a + 10b)


Q5: (a+b)² − 36

Step 1: Recognize the form:
(a+b)² − 36 = (a+b)² − (6)²
Step 2: Apply the identity A² − B² = (A − B)(A + B).
Here, A = (a+b) and B = 6
Step 3: Write the factors:
= (a+b − 6)(a+b + 6)
Answer: (a+b − 6)(a+b + 6)


Q6: 16c² − 1

Step 1: Recognize the form:
16c² − 1 = (4c)² − 1²
Step 2: Apply the identity A² − B² = (A − B)(A + B).
Here, A = 4c and B = 1
Step 3: Write the factors:
= (4c − 1)(4c + 1)
Answer: (4c − 1)(4c + 1)


Q7: 1 − 64b²

Step 1: Recognize the form:
1 − 64b² = 1² − (8b)²
Step 2: Apply the identity A² − B² = (A − B)(A + B).
Here, A = 1 and B = 8b
Step 3: Write the factors:
= (1 − 8b)(1 + 8b)
Answer: (1 − 8b)(1 + 8b)


Q8: \(\frac{9}{16} – 25x^2\)

Step 1: Recognize that this is a difference of squares: \[ \frac{9}{16} = \left(\frac{3}{4}\right)^2,\quad 25x^2 = \left(5x\right)^2 \]Step 2: Apply the identity \(a^2 – b^2 = (a – b)(a + b)\): \[ = \left(\frac{3}{4} – 5x\right)\left(\frac{3}{4} + 5x\right) \]Step 3: Write the final factored form: \[ = \left(\frac{3 – 20x}{4}\right)\left(\frac{3 + 20x}{4}\right) \] Or you can leave it as: \[ = \left(\frac{3}{4} – 5x\right)\left(\frac{3}{4} + 5x\right) \]Answer: \(\left(\frac{3}{4} – 5x\right)\left(\frac{3}{4} + 5x\right)\)


Q9: \(z^2 – \frac{1}{144}\)

Step 1: Recognize that this is a difference of squares: \[ z^2 = (z)^2,\quad \frac{1}{144} = \left(\frac{1}{12}\right)^2 \]Step 2: Apply the identity \(a^2 – b^2 = (a – b)(a + b)\): \[ = \left(z – \frac{1}{12}\right)\left(z + \frac{1}{12}\right) \]Step 3: Write the final factored form: \[ = \left(z – \frac{1}{12}\right)\left(z + \frac{1}{12}\right) \]Answer: \(\left(z – \frac{1}{12}\right)\left(z + \frac{1}{12}\right)\)


Q10: 1 − (a−b)²

Step 1: Recognize the form:
1 − (a−b)² = 1² − (a−b)²
Step 2: Apply the identity A² − B² = (A − B)(A + B).
Here, A = 1 and B = (a−b)
Step 3: Write the factors:
= (1 − (a−b))(1 + (a−b))
= (1 − a + b)(1 + a − b)
Answer: 1 − (a−b)² = (1 + a − b)(1 + b − a)


Q11: (3m−n)² − (m−2n)²

Step 1: Recognize the form:
(3m−n)² − (m−2n)² = A² − B²
Here, A = (3m−n), B = (m−2n)
Step 2: Apply the identity A² − B² = (A − B)(A + B).
Step 3: Write the factors:
= ((3m−n) − (m−2n))((3m−n) + (m−2n))
= (2m + n)(4m − 3n)
Answer: (3m−n)² − (m−2n)² = (2m + n)(4m − 3n)


Q12: (3x + 2y)² − (2x − 3y)²

Step 1: Recognize the form:
(3x + 2y)² − (2x − 3y)² = A² − B²
Here, A = (3x + 2y), B = (2x − 3y)
Step 2: Apply the identity A² − B² = (A − B)(A + B).
Step 3: Write the factors:
= ((3x + 2y) − (2x − 3y))((3x + 2y) + (2x − 3y))
= (x + 5y)(5x − y)
Answer: (3x + 2y)² − (2x − 3y)² = (x + 5y)(5x − y)


Q13: 16(a+b)² − 9(a−b)²

Step 1: Recognize the form:
16(a+b)² − 9(a−b)² = (4(a+b))² − (3(a−b))²
Step 2: Apply the identity A² − B² = (A − B)(A + B).
Step 3: Write the factors:
= (4(a+b) − 3(a−b))(4(a+b) + 3(a−b))
= (a + 7b)(7a + b)
Answer: (a + 7b)(7a + b)


Q14: 9(x+y)² − 16(x−2y)²

Step 1: Recognize the form:
9(x+y)² − 16(x−2y)² = (3(x+y))² − (4(x−2y))²
Step 2: Apply the identity A² − B² = (A − B)(A + B).
Step 3: Write the factors:
= (3(x+y) − 4(x−2y))(3(x+y) + 4(x−2y))
= (11y − x)(7x − 5y)
Answer: (11y − x)(7x − 5y)


Q15: 36(a-b)² − 25(a+b)²

Step 1: Recognize the form:
36(a-b)² − 25(a+b)² = (6(a-b))² − (5(a+b))²
Step 2: Apply the identity A² − B² = (A − B)(A + B).
Step 3: Write the factors:
= (6(a-b) − 5(a+b))(6(a-b) + 5(a+b))
= (a − 11b)(11a − b)
Answer: (a − 11b)(11a − b)


Q16: 9(3x+1)² − 4(x−1)²

Step 1: Recognize the form:
9(3x+1)² − 4(x−1)² = (3(3x+1))² − (2(x−1))²
Step 2: Apply the identity A² − B² = (A − B)(A + B).
Step 3: Write the factors:
= (3(3x+1) − 2(x−1))(3(3x+1) + 2(x−1))
= (7x + 5)(11x + 1)
Answer: (7x + 5)(11x + 1)


Q17: a² − 2ab + b² − c²

Step 1: Recognize the forms:
a² − 2ab + b² − c² = (a-b)² − c²
Step 2: Apply the identity A² − B² = (A − B)(A + B).
Step 3: Write the factors:
= ((a-b) − c)((a-b) + c)
= (a − b − c)(a − b + c)
Answer: (a − b − c)(a − b + c)


Q18: x² − a² − 2a − 1

Step 1: Group terms:
x² − a² − 2a − 1 = x² − (a² + 2a + 1) = x² − (a+1)²
Step 2: Apply the identity A² − B² = (A − B)(A + B).
Step 3: Write the factors:
= (x − (a+1))(x + (a+1))
= (x − a − 1)(x + a + 1)
Answer: (x − a − 1)(x + a + 1)


Q19: x² − m² + 6mn − 9n²

Step 1: Group terms:
x² − m² + 6mn − 9n² = x² − (m² − 6mn + 9n²) = x² − (m − 3n)²
Step 2: Apply the identity A² − B² = (A − B)(A + B).
Step 3: Write the factors:
= (x − (m − 3n))(x + (m − 3n))
= (x − m + 3n)(x + m − 3n)
Answer: (x − m + 3n)(x + m − 3n)


Q20: a⁴ − b⁴

Step 1: Recognize the form:
a⁴ − b⁴ = (a²)² − (b²)²
Step 2: Apply the identity A² − B² = (A − B)(A + B).
Step 3: Factor further:
a² − b² = (a − b)(a + b)
So, a⁴ − b⁴ = (a − b)(a + b)(a² + b²)
Answer: (a − b)(a + b)(a² + b²)


Q21: 16a⁴ − 81b⁴

Step 1: Recognize the form:
16a⁴ − 81b⁴ = (4a²)² − (9b²)²
Step 2: Apply the identity A² − B² = (A − B)(A + B).
Step 3: Factor further:
4a² − 9b² = (2a − 3b)(2a + 3b)
So, 16a⁴ − 81b⁴ = (2a − 3b)(2a + 3b)(4a² + 9b²)
Answer: (2a − 3b)(2a + 3b)(4a² + 9b²)


Q22: 3 − 75z²

Step 1: Factor out the common factor:
3 − 75z² = 3(1 − 25z²)
Step 2: Recognize the difference of squares:
1 − 25z² = 1² − (5z)²
Step 3: Apply the identity A² − B² = (A − B)(A + B):
1² − (5z)² = (1 − 5z)(1 + 5z)
Step 4: Write the complete factorisation:
3 − 75z² = 3(1 − 5z)(1 + 5z)
Answer: 3(1 − 5z)(1 + 5z)


Q23: 48a²b² − 3

Step 1: Factor out the common factor:
48a²b² − 3 = 3(16a²b² − 1)
Step 2: Recognize the difference of squares:
16a²b² − 1 = (4ab)² − 1²
Step 3: Apply the identity A² − B² = (A − B)(A + B):
(4ab)² − 1² = (4ab − 1)(4ab + 1)
Step 4: Write the complete factorisation:
48a²b² − 3 = 3(4ab − 1)(4ab + 1)
Answer: 3(4ab − 1)(4ab + 1)


Q24: 4x³ − 81x

Step 1: Factor out the common factor:
4x³ − 81x = x(4x² − 81)
Step 2: Recognize the difference of squares:
4x² − 81 = (2x)² − 9²
Step 3: Apply the identity A² − B² = (A − B)(A + B):
(2x)² − 9² = (2x − 9)(2x + 9)
Step 4: Write the complete factorisation:
4x³ − 81x = x(2x − 9)(2x + 9)
Answer: x(2x − 9)(2x + 9)


Q25: 9b³ − 144b

Step 1: Factor out the common factor:
9b³ − 144b = 9b(b² − 16)
Step 2: Recognize the difference of squares:
b² − 16 = b² − 4²
Step 3: Apply the identity A² − B² = (A − B)(A + B):
b² − 4² = (b − 4)(b + 4)
Step 4: Write the complete factorisation:
9b³ − 144b = 9b(b − 4)(b + 4)
Answer: 9b(b − 4)(b + 4)


Q26: \(32x^2 – 72y^2\)

Step 1: Find the greatest common factor (GCF) of the terms: \[ GCF = 8 \\ 32x^2 – 72y^2 = 8(4x^2 – 9y^2) \]Step 2: Recognize that \(4x^2 – 9y^2\) is a difference of squares: \[ 4x^2 = (2x)^2,\quad 9y^2 = (3y)^2 \]Step 3: Apply the identity \(a^2 – b^2 = (a – b)(a + b)\): \[ = 8(2x – 3y)(2x + 3y) \]Answer: 8(2x – 3y)(2x + 3y)


Q27: \(50x^2y – 32y^3\)

Step 1: Find the greatest common factor (GCF) of the terms: \[ GCF = 2y \\ 50x^2y – 32y^3 = 2y(25x^2 – 16y^2) \]Step 2: Recognize that \(25x^2 – 16y^2\) is a difference of squares: \[ 25x^2 = (5x)^2,\quad 16y^2 = (4y)^2 \]Step 3: Apply the identity \(a^2 – b^2 = (a – b)(a + b)\): \[ = 2y(5x – 4y)(5x + 4y) \]Answer: 2y(5x – 4y)(5x + 4y)


Q28: a³ − 4ab²

Step 1: Factor out the common factor:
a³ − 4ab² = a(a² − 4b²)
Step 2: Recognize the difference of squares:
a² − 4b² = a² − (2b)²
Step 3: Apply the identity A² − B² = (A − B)(A + B):
a² − (2b)² = (a − 2b)(a + 2b)
Step 4: Write the complete factorisation:
a³ − 4ab² = a(a − 2b)(a + 2b)
Answer: a³ − 4ab² = a(a − 2b)(a + 2b)


Q29: ab³c − abc³

Step 1: Factor out the common factor:
ab³c − abc³ = abc(b² − c²)
Step 2: Recognize the difference of squares:
b² − c² = (b − c)(b + c)
Step 3: Write the complete factorisation:
ab³c − abc³ = abc(b − c)(b + c)
Answer: ab³c − abc³ = abc(b − c)(b + c)


Q30: 9(x+y)³ − 16(x+y)

Step 1: Factor out the common factor (x+y):
9(x+y)³ − 16(x+y) = (x+y)(9(x+y)² − 16)
Step 2: Recognize the difference of squares:
9(x+y)² − 16 = (3(x+y))² − 4²
Step 3: Apply the identity A² − B² = (A − B)(A + B):
(3(x+y))² − 4² = (3(x+y) − 4)(3(x+y) + 4) = (3x + 3y − 4)(3x + 3y + 4)
Step 4: Write the complete factorisation:
9(x+y)³ − 16(x+y) = (x + y)(3x + 3y − 4)(3x + 3y + 4)
Answer: (x + y)(3x + 3y − 4)(3x + 3y + 4)


Q31: 1 − 0.49c⁶

Step 1: Express the decimal as a square:
0.49 = 0.7² → 1 − 0.49c⁶ = 1 − (0.7c³)²
Step 2: Apply the difference of squares identity A² − B² = (A − B)(A + B):
1 − (0.7c³)² = (1 − 0.7c³)(1 + 0.7c³)
Answer: (1 − 0.7c³)(1 + 0.7c³)


Q32: x² − y² − 8yz − 16z²

Step 1: Rearrange terms for grouping:
x² − (y² + 8yz + 16z²)
Step 2: Recognize the perfect square:
y² + 8yz + 16z² = (y + 4z)² → x² − (y + 4z)²
Step 3: Apply the difference of squares identity A² − B² = (A − B)(A + B):
x² − (y + 4z)² = (x − (y + 4z))(x + (y + 4z))
Step 4: Simplify the factors:
(x − (y + 4z)) = x − y − 4z
(x + (y + 4z)) = x + y + 4z
Answer: (x − y − 4z)(x + y + 4z)


Q33: \(x^3y^3 – \frac{25xy}{z^2}\)

Step 1: Find the common factor of both terms: \[ = xy\left(x^2y^2 – \frac{25}{z^2}\right) \]Step 2: Recognize that \(x^2y^2 – \frac{25}{z^2}\) is a difference of squares: \[ x^2y^2 = (xy)^2,\quad \frac{25}{z^2} = \left(\frac{5}{z}\right)^2 \]Step 3: Apply the identity \(a^2 – b^2 = (a – b)(a + b)\): \[ = xy\left(xy – \frac{5}{z}\right)\left(xy + \frac{5}{z}\right) \]Answer: xy\left(xy – \frac{5}{z}\right)\left(xy + \frac{5}{z}\right)


Q34: \(0.0324x^4 – 0.0064b^4\)

Step 1: Find the common factor of both terms: \[ 0.0324x^4 – 0.0064b^4 = 4(0.0081x^4 – 0.0016b^4) \] Step 2: Express the decimals as squares: \[ 0.0081 = (0.09)^2,\quad 0.0016 = (0.04)^2 \] Thus, \[ = 4 (0.09x^2)^2 – (0.04b^2)^2 \]Step 2: Apply the difference of squares formula \(a^2 – b^2 = (a – b)(a + b)\): \[ = 4\left(0.09x^2 – 0.04b^2\right)\left(0.09x^2 + 0.04b^2\right) \]Step 3: Factor each term further if possible.
First factor: \[ 0.09x^2 – 0.04b^2 = (0.3x – 0.2b)(0.3x + 0.2b) \]Step 4: Combine the factored terms: \[ = 4(0.3x – 0.2b)(0.3x + 0.2b)\times (0.09x^2 + 0.04b^2) \\ = 4(0.09x^2 + 0.04b^2)(0.3x + 0.2b)(0.3x – 0.2b) \]Answer: \(4(0.09x^2 + 0.04b^2)(0.3x + 0.2b)(0.3x – 0.2b)\)


Q35: Using the identity \(\left(a^2-b^2\right)=(a+b)(a-b)\), evaluate each of the following:

i. 82² − 18²

Step 1: Apply the identity: (82 + 18)(82 − 18)
Answer: 6400

ii. (15.8)² − (9.2)²

Step 1: (15.8 + 9.2)(15.8 − 9.2)
Answer: 165

iii. (0.8)² − (0.2)²

Step 1: (0.8 + 0.2)(0.8 − 0.2)
Answer: 0.6

iv. \(\left(7\frac{3}{4}\right)^2-\left(2\frac{1}{4}\right)^2\)

Step 1: Convert to improper fractions: 31/4, 9/4
Step 2: Apply identity: \((\frac{31}{4} + \frac{9}{4}) (\frac{31}{4} − \frac{9}{4}) = 10 × 5.5\)
Answer: 55

v. \(\left(6\frac{4}{11}\right)^2-\left(4\frac{7}{11}\right)^2\)

Step 1: Convert to improper fractions: 70/11, 51/11
Step 2: Apply identity: \((\frac{70}{11} + \frac{51}{11}) (\frac{70}{11} − \frac{51}{11}) = 11 × \frac{19}{11}\)
Answer: 19

vi. \(\frac{7.3\times7.3-2.7\times2.7}{7.3-2.7}\)

Step 1: Numerator: 7.3² − 2.7² = (7.3 + 2.7)(7.3 − 2.7)
Step 2: Divide by (7.3 − 2.7)
→ \(\frac{(7.3 + 2.7)(7.3 − 2.7)}{(7.3 − 2.7)} = (7.3 + 2.7) = 10\)
Answer: 10


previous
next

Share the Post:

Leave a Comment

Your email address will not be published. Required fields are marked *

Related Posts​

Number System

Number System

Step by Step solutions of Concise Mathematics ICSE Class-6 Maths chapter 1- Number System by...
Read More

Join Our Newsletter

Name
Email
The form has been submitted successfully!
There has been some error while submitting the form. Please verify all form fields again.
Scroll to Top