Factorisation

factorisation class 8 selina

Step by Step solutions of Test Yourself Concise Mathematics ICSE Class-8 Maths chapter 13- Factorisation by Selina is provided.

Table of Contents

Test Yourself

Q1: Multiple Choice Type Factorisation

i. \((a+b)^2-4ab\) is equal to:

Step 1: \[ (a+b)^2 – 4ab = a^2 + 2ab + b^2 – 4ab \\ = a^2 – 2ab + b^2 = (a-b)^2 \]Answer: d. (a-b)(a-b)

ii. \(a^4+4a^2-32\) is equal to:

Step 1: Factor out 1 (no common factor here) and write as quadratic in \(a^2\):
\(a^4+4a^2-32 = (a^2)^2 + 4(a^2) – 32\)
Step 2: Factor quadratic \(a^4+4a^2-32\) as \((a^2+8)(a^2-4)\)
Step 3: Factor \(a^2-4\) as \((a-2)(a+2)\)
Answer: d. \((a^2+8)(a-2)(a+2)\)

iii. \(36-60y+25y^2\) is equal to:

\[ 36-60y+25y^2 = (6-5y)^2 \]None of the given options exactly match \((6-5y)(6-5y)\).

Answer:d. None of these

iv. \((x-2y)^2 – 3x + 6y\) is equal to:

Step 1: Group terms: \((x-2y)^2 – 3(x-2y)\)
Step 2: Factor out common \((x-2y)\):
\((x-2y)((x-2y)-3) = (x-2y)(x-2y-3)\)
Answer: d. \((x-2y)(x-2y-3)\)

v. \(a(x-y)^2 – by + bx\) is equal to:

Step 1: Group terms: \(a(x-y)^2 + b(x-y)\)
Step 2: Factor out common \((x-y)\):
\((x-y)(a(x-y)+b) = (x-y)(ax – ay + b)\)
Answer: d. \((x-y)(ax-ay+b)\)

vi. Statement 1: The product of two binomials is a trinomial, conversely if we factorise a trinomial we always obtain two binomial factors.
Statement 2: The square of the difference of two terms = The sum of the same two terms × their difference.
Which of the following options is correct?

Step 1: Statement 1: Product of two binomials is a trinomial → False.
beacuse Product of \((x+2)(x-2)\) is binomial.
Step 2: Statement 2: Square of difference = sum × difference → False
because \((a-b)^2 = a^2 – 2ab + b^2\) (this is LHS)
\((a+b)(a-b) = a^2-b^2\) (this is RHS)
As LHS ≠ RHS, so statement is also false.
Answer: d. Both statements are false

vii. Assertion (A): \(25x^2-5x+1\) is a perfect square trinomial.
Reason (R): Any trinomial which can be expressed as \(x^2+y^2+2xy\) or \(x^2+y^2-2xy\) is a perfect square trinomial.

Step 1: Check whether \(25x^2-5x+1\) is a perfect square.
\[ (5x-1)^2 = 25x^2-10x+1 \neq 25x^2-5x+1 \] So, Assertion is false.
Step 2: Reason gives the correct definition of a perfect square trinomial.
So, Reason is true.
Answer: d. A is false, but R is true.

viii. Assertion (A): \(x^2+7x+12=x^2+(4+3)x+4×3=x^2+4x+3x+4×3=(x+4)(x+3)\).
Reason (R): To factorise a given trinomial, product of the first and the last term of the trinomial is always the sum of two parts when we split the middle term.

Step 1: \[ x^2+7x+12=x^2+4x+3x+12=(x+4)(x+3) \] Assertion is true.
Step 2: The reason correctly explains the splitting method.
Reason is true and explains Assertion.
Answer: a. Both A and R are correct, and R is the correct explanation for A.

ix. Assertion (A): The value of k so that the factors of \((x^2-kx+121/16)\) the same is \(11/2\).
Reasons (R): \((x+a)(x+b)=a^2+(a+b)x+ab\)

Step 1: For equal factors: \[ \left(x-\frac{11}{4}\right)^2=x^2-\frac{11}{2}x+\frac{121}{16} \] So, \(k=\frac{11}{2}\). Assertion is true.
Step 2:The identity given in Reason is correct and used here.
Reason is true and explains Assertion.
Answer: a. Both A and R are correct, and R is the correct explanation for A.

x. Assertion (A): There are two values of b so that \(x^2+by-24\) is factorisable.
Reason (R): Two values have: Product = -24 and sum = 2.

Step 1: Multiply to get −24 (the constant term)
Add to b (the coefficient of the middle term)
Values of b such that their sum is 2 and product is -24 are 6 and -4.
So Assertion is True.
Step 2: Reason:
\[ ⇒ x^2 + bx – 24 \\ ⇒ x^2 + 6x – 4x – 24 \\ ⇒ x(x + 6) – 4(x + 6) \\ ⇒ (x – 4)(x + 6) \] Reason is True.
Answer: a. Both A and R are correct, and R is the correct explanation for A.


Q2: Factorise:

i. \(6x^3-8x^2\)

Step 1: Take the common factor: \(2x^2\)
Step 2: Factorise: \(6x^3-8x^2 = 2x^2(3x-4)\)
Answer: \(2x^2(3x-4)\)

ii. \(36x^2y^2-30x^3y^3+48x^3y^2\)

Step 1: Take the common factor: \(6x^2y^2\)
Step 2: Factorise the remaining terms: \(36x^2y^2-30x^3y^3+48x^3y^2 = 6x^2y^2(6-5xy+8x)\)
Answer: \(6x^2y^2(6-5xy+8x)\)

iii. \(8(2a+3b)^3-12(2a+3b)^2\)

Step 1: Take the common factor: \(4(2a+3b)^2\)
Step 2: Factorise remaining: \(8(2a+3b)^3-12(2a+3b)^2 = 4(2a+3b)^2(2(2a+3b)-3)\)
Step 3: Simplify inside bracket: \(2(2a+3b)-3 = 4a+6b-3\)
Answer: \(4(2a+3b)^2(4a+6b-3)\)

iv. \(9a(x-2y)^4-12a(x-2y)^3\)

Step 1: Take the common factor: \(3a(x-2y)^3\)
Step 2: Factorise remaining: \(9a(x-2y)^4-12a(x-2y)^3 = 3a(x-2y)^3(3(x-2y)-4)\)
Step 3: Simplify inside bracket: \(3(x-2y)-4 = 3x-6y-4\)
Answer: \(3a(x-2y)^3(3x-6y-4)\)


Q3: Factorise:

i. \(a^2 – ab(1-b) – b^3\)

Step 1: Expand the middle term: \(-ab(1-b) = -ab + ab^2\)
Step 2: Write the expression: \(a^2 – ab + ab^2 – b^3\)
Step 3: Group terms: \((a^2 – ab) + (ab^2 – b^3)\)
Step 4: Factor each group: \(a(a-b) + b^2(a-b)\)
Step 5: Factor common: \((a-b)(a+b^2)\)
Answer: \((a-b)(a+b^2)\)

ii. \(xy^2 + (x-1)y – 1\)

Step 1: Group terms: \((xy^2 + xy) – (y + 1)\)
Step 2: Factor each group: \(xy(y+1) – 1(y+1)\)
Step 3: Factor common: \((y+1)(xy-1)\)
Answer: \((y+1)(xy-1)\)

iii. \((ax+by)^2 + (bx-ay)^2\)

Step 1: Expand both squares:
\((ax+by)^2 = a^2x^2 + 2abxy + b^2y^2\)
\((bx-ay)^2 = b^2x^2 – 2abxy + a^2y^2\)
Step 2: Add them: \(a^2x^2 + b^2y^2 + b^2x^2 + a^2y^2 = a^2(x^2+y^2) + b^2(x^2+y^2)\)
Step 3: Factor common: \((a^2+b^2)(x^2+y^2)\)
Answer: \((a^2+b^2)(x^2+y^2)\)

iv. \(ab(x^2+y^2)-xy(a^2+b^2)\)

Step 1: Rearrange: \(ab(x^2+y^2) – a^2xy – b^2xy = abx^2 + aby^2 – a^2xy – b^2xy\)
Step 2: Group terms: \((abx^2 – a^2xy) + (aby^2 – b^2xy)\)
Step 3: Factor each group: \(x(ab – a^2y) + y(ab – b^2x)\)
Step 4: Factor common: \((bx-ay)(ax-by)\)
Answer: \((bx-ay)(ax-by)\)

v. \(m-1-(m-1)^2 + am – a\)

Step 1: Expand the square: \(-(m-1)^2 = -m^2 + 2m – 1\)
Step 2: Combine all terms: \(m-1 – m^2 + 2m -1 + am – a = -m^2 + (3+a)m – (2+a)\)
Step 3: Factor quadratic: \((m-1)(2-m+a)\)
Answer: \((m-1)(2-m+a)\)


Q4: Factorise:

i. \(25(2x-y)^2 – 16(x-2y)^2\)

Step 1: Recognise difference of squares: \(25(2x-y)^2 – 16(x-2y)^2 = [5(2x-y)]^2 – [4(x-2y)]^2\)
Step 2: Apply the formula \(A^2-B^2 = (A+B)(A-B)\)
Step 3: Expand each factor:
\(5(2x-y)+4(x-2y) = 10x-5y+4x-8y = 14x-13y\)
\(5(2x-y)-4(x-2y) = 10x-5y-4x+8y = 6x+3y = 3(2x+y)\)
Answer: \(3(14x-13y)(2x+y)\)

ii. \(16(5x+4)^2 – 9(3x-2)^2\)

Step 1: Recognise difference of squares: \(16(5x+4)^2 – 9(3x-2)^2 = [4(5x+4)]^2 – [3(3x-2)]^2\)
Step 2: Apply \(A^2-B^2 = (A+B)(A-B)\)
Step 3: Expand each factor:
\(4(5x+4)+3(3x-2) = 20x+16+9x-6 = 29x+10\)
\(4(5x+4)-3(3x-2) = 20x+16-9x+6 = 11x+22 = 11(x+2)\)
Answer: \(11(29x+10)(x+2)\)

iii. \(25(x-2y)^2 – 4\)

Step 1: Recognise difference of squares: \(25(x-2y)^2 – 4 = [5(x-2y)]^2 – 2^2\)
Step 2: Apply \(A^2-B^2 = (A+B)(A-B)\)
Step 3: Expand each factor:
\(5(x-2y)+2 = 5x-10y+2\)
\(5(x-2y)-2 = 5x-10y-2\)
Answer: \((5x-10y+2)(5x-10y-2)\)


Q5: Factorise:

i. \(a^2-23a+42\)

Step 1: Find two numbers whose sum = -23 and product = 42 → -21 and -2
Step 2: Split middle term: \(a^2-21a-2a+42\)
Step 3: Factor by grouping: \(a(a-21)-2(a-21) = (a-21)(a-2)\)
Answer: \((a-21)(a-2)\)

ii. \(a^2-23a-108\)

Step 1: Find two numbers whose sum = -23 and product = -108 → -27 and 4
Step 2: Split middle term: \(a^2-27a+4a-108\)
Step 3: Factor by grouping: \(a(a-27)+4(a-27) = (a-27)(a+4)\)
Answer: \((a-27)(a+4)\)

iii. \(1-18x-63x^2\)

Step 1: Rearrange: \(-63x^2-18x+1\)
Step 2: Find two numbers whose sum=-18 and product=-63 → -21 and 3
Step 3: Split middle term: \(-63x^2-21x+3x+1\)
Step 4: Factor by grouping: \(-3x(21x+7)+1(3x+1) = (1-21x)(1+3x)\)
Answer: \((1-21x)(1+3x)\)

iv. \(5x^2-4xy-12y^2\)

Step 1: Multiply first and last: 5*-12=-60, find numbers sum=-4 → 6 and -10
Step 2: Split middle: \(5x^2+6xy-10xy-12y^2\)
Step 3: Factor by grouping: \(x(5x+6y)-2y(5x+6y) = (x-2y)(5x+6y)\)
Answer: \((x-2y)(5x+6y)\)

v. \(x(3x+14)+8\)

Step 1: Expand: \(3x^2+14x+8\)
Step 2: Multiply first and last: 3*8=24, find two numbers sum=14 → 12 and 2
Step 3: Split middle: \(3x^2+12x+2x+8\)
Step 4: Factor by grouping: \(3x(x+4)+2(x+4)=(3x+2)(x+4)\)
Answer: \((x+4)(3x+2)\)

vi. \(5-4x(1+3x)\)

Step 1: Expand: \(5-4x-12x^2\)
Step 2: Rearrange: \(-12x^2-4x+5\)
Step 3: Multiply first and last: -12*5=-60, sum=-4 → -10 and 6
Step 4: Split middle: \(-12x^2-10x+6x+5\)
Step 5: Factor by grouping: \(-2x(6x+5)+1(6x+5) = (1-2x)(5+6x)\)
Answer: \((1-2x)(5+6x)\)

vii. \(x^2y^2-3xy-40\)

Step 1: Treat xy terms: \(x^2y^2-3xy-40\)
Step 2: Multiply first and last: 1*-40=-40, sum=-3 → -8 and 5
Step 3: Split middle: \(x^2y^2-8xy+5xy-40\)
Step 4: Factor by grouping: \(xy(xy-8)+5(xy-8)=(xy-8)(xy+5)\)
Answer: \((xy-8)(xy+5)\)

viii. \((3x-2y)^2-5(3x-2y)-24\)

Step 1: Expand: \((3x-2y)^2-5(3x-2y)-24 = 9x^2-12xy+4y^2 -15x+10y -24\)
Step 2: Factor by inspection: \((3x-2y-8)(3x-2y+3)\)
Answer: \((3x-2y-8)(3x-2y+3)\)

ix. \(12(a+b)^2-(a+b)-35\)

Step 1: Expand: \(12a^2+24ab+12b^2 – a – b -35\)
Step 2: Factor by grouping: \((4a+4b-7)(3a+3b+5)\)
Answer: \((4a+4b-7)(3a+3b+5)\)


Q6: Factorise:

i. \(15(5x-4)^2 – 10(5x-4)\)

Step 1: Take common factor: \(5(5x-4)(3(5x-4)-2)\)
Step 2: Simplify: \(5(5x-4)(15x-12-2) = 5(5x-4)(15x-14)\)
Answer: \(5(5x-4)(15x-14)\)

ii. \(3a^2x – bx + 3a^2 – b\)

Step 1: Factor by grouping: \((3a^2x + 3a^2) – (bx + b)\)
Step 2: Take common factors: \(3a^2(x+1) – b(x+1)\)
Step 3: Factor out \((x+1)\): \((3a^2-b)(x+1)\)
Answer: \((3a^2-b)(x+1)\)

iii. \(b(c-d)^2 + a(d-c) + 3(c-d)\)

Step 1: Note that \(a(d-c) = -a(c-d)\)
Step 2: Combine terms: \(b(c-d)^2 – a(c-d) + 3(c-d)\)
Step 3: Take common factor \((c-d)\): \((c-d)(b(c-d) – a + 3) = (c-d)(bc-bd-a+3)\)
Answer: \((c-d)(bc-bd-a+3)\)

iv. \(ax^2 + b^2y – ab^2 – x^2y\)

Step 1: Group terms: \((ax^2 – x^2y) + (b^2y – ab^2)\)
Step 2: Factor each group: \(x^2(a-y) + b^2(y-a)\)
Step 3: Rewrite second term: \(b^2(y-a) = -b^2(a-y)\)
Step 4: Factor out \((a-y)\): \((a-y)(x^2 – b^2) = (a-y)(x+b)(x-b)\)
Answer: \((a-y)(x+b)(x-b)\)

v. \(1 – 3x – 3y – 4(x+y)^2\)

Step 1: Common: \(1-3(x+y)-4(x+y)^2\)
Step 2: Put \(x+y=z\):
\(1-3z-4z^2\)
Step 3: Solve this quadratic equation such that product is -4 and sum is -3.
\[ 1-4z+z-4z^2 \\ (1-4z)+z(1-4z) \]Step 4: Common:
\[ (1-4z)(1+z) \\ \] Step 5: Now put \( z = (x+y)\):
\[ [1-4(x+y)](1+x+y) \\ (1-4x-4y)(1+x+y) \]Answer: \((1-4x-4y)(1+x+y)\)


Q7: Factorise:

i. \(2a^3 – 50a\)

Step 1: Take common factor: \(2a(a^2 – 25)\)
Step 2: Factorise difference of squares: \(2a(a+5)(a-5)\)
Answer: \(2a(a+5)(a-5)\)

ii. \(54a^2b^2 – 6\)

Step 1: Take common factor: \(6(9a^2b^2 – 1)\)
Step 2: Factorise difference of squares: \(6(3ab+1)(3ab-1)\)
Answer: \(6(3ab+1)(3ab-1)\)

iii. \(64a^2b – 144b^3\)

Step 1: Take common factor: \(16b(4a^2 – 9b^2)\)
Step 2: Factorise difference of squares: \(16b(2a+3b)(2a-3b)\)
Answer: \(16b(2a+3b)(2a-3b)\)

iv. \((2x-y)^3 – (2x-y)\)

Step 1: Take common factor: \((2x-y)((2x-y)^2 – 1)\)
Step 2: Factorise difference of squares: \((2x-y)((2x-y)+1)((2x-y)-1)\)
Answer: \((2x-y)(2x-y+1)(2x-y-1)\)

v. \(x^2 – 2xy + y^2 – z^2\)

Step 1: Combine squares: \((x-y)^2 – z^2\)
Step 2: Factorise difference of squares: \((x-y+z)(x-y-z)\)
Answer: \((x-y+z)(x-y-z)\)

vi. \(x^2 – y^2 – 2yz – z^2\)

Step 1: Combine squares: \(x^2 – (y+z)^2\)
Step 2: Factorise difference of squares: \((x+y+z)(x-y-z)\)
Answer: \((x+y+z)(x-y-z)\)

vii. \(7a^5 – 567a\)

Step 1: Take common factor: \(7a(a^4 – 81)\)
Step 2: Factorise difference of squares: \(7a((a^2)^2 – 9^2) = 7a(a^2+9)(a+3)(a-3)\)
Answer: \(7a(a^2+9)(a+3)(a-3)\)

viii. \(5x^2 – \frac{20x^4}{9}\)

Step 1: Take common factor: \(5x^2(1 – \frac{4x^2}{9})\)
Step 2: Factorise difference of squares: \(5x^2(1+\frac{2x}{3})(1-\frac{2x}{3})\)
Answer: \(5x^2(1+\frac{2x}{3})(1-\frac{2x}{3})\)


Q8: Factorise \(xy^2-xz^2\). Hence, find the value of:

Factorise \(xy^2 – xz^2\)

Step 1: Take common factor \(x\): \(x(y^2 – z^2)\)
Step 2: Factorise difference of squares: \(x(y+z)(y-z)\)
Answer: \(x(y+z)(y-z)\)

i. \(9×8^2-9×2^2\)

Step 1: Take common factor 9: \(9(8^2 – 2^2)\)
Step 2: Factorise difference of squares: \(9(8+2)(8-2)\)
Step 3: Simplify: \(9 \times 10 \times 6 = 540\)
Answer: 540

ii. \(40×〖5.5〗^2-40×〖4.5〗^2\)

Step 1: Take common factor 40: \(40(5.5^2 – 4.5^2)\)
Step 2: Factorise difference of squares: \(40(5.5 + 4.5)(5.5 – 4.5)\)
Step 3: Simplify: \(40 \times 10 \times 1 = 400\)
Answer: 400


Q9: Factorise:

i. \((a-3b)^2 – 36b^2\)

Step 1: Recognise difference of squares: \((a-3b)^2 – (6b)^2\)
Step 2: Factorise: \((a-3b+6b)(a-3b-6b)\)
Step 3: Simplify: \((a+3b)(a-9b)\)
Answer: \((a+3b)(a-9b)\)

ii. \(25(a-5b)^2 – 4(a-3b)^2\)

Step 1: Recognise difference of squares: \([5(a-5b)]^2 – [2(a-3b)]^2\)
Step 2: Factorise: \([5(a-5b)+2(a-3b)][5(a-5b)-2(a-3b)]\)
Step 3: Simplify each bracket:
5(a-5b)+2(a-3b) = 5a-25b + 2a-6b = 7a-31b
5(a-5b)-2(a-3b) = 5a-25b – 2a+6b = 3a-19b
Answer: \((7a-31b)(3a-19b)\)

iii. \(a^2 – 0.36b^2\)

Step 1: Recognise difference of squares: \(a^2 – (0.6b)^2\)
Step 2: Factorise: \((a + 0.6b)(a – 0.6b)\)
Answer: \((a+0.6b)(a-0.6b)\)

iv. \(x^4 – 5x^2 – 36\)

Step 1: Substitute \(y = x^2\), equation becomes \(y^2 – 5y – 36\)
Step 2: Factorise \(y^2 – 5y – 36 = (y+4)(y-9)\)
Step 3: Substitute back \(y = x^2\): \((x^2+4)(x^2-9)\)
Step 4: Factorise \(x^2-9 = (x+3)(x-3)\)
Answer: \((x^2+4)(x+3)(x-3)\)

v. \(15(2x-y)^2 – 16(2x-y) – 15\)

Step 1: Substitute \(z = 2x – y\), equation becomes \(15z^2 – 16z – 15\)
Step 2: Factorise \(15z^2 – 16z – 15 = (3z-5)(5z+3)\)
Step 3: Substitute back \(z = 2x – y\): (3(2x-y)-5)(5(2x-y)+3)
Step 4: Simplify brackets: \((6x-3y-5)(10x-5y+3)\)
Answer: \((6x-3y-5)(10x-5y+3)\)


Q10: Evaluate (using factors): \(301^2 \times 300 – 300^3\)

Step 1: Factor out common term \(300\):
\(301^2 \times 300 – 300^3 = 300 \left(301^2 – 300^2\right)\)
Step 2: Recognise difference of squares:
\(301^2 – 300^2 = (301 – 300)(301 + 300) = 1 \times 601 = 601\)
Step 3: Multiply the factor back:
\(300 \times 601 = 180300\)
Answer: 180300


Q11: Use factor method to evaluate

i. \((5z^2-80)\div(z-4)\)

Step 1: Factor out common term from numerator:
\(5z^2-80 = 5(z^2-16)\)
Step 2: Factorise as difference of squares:
\(z^2-16 = (z-4)(z+4)\)
Step 3: Divide by \((z-4)\):
\(\frac{5(z-4)(z+4)}{(z-4)} = 5(z+4)\)
Answer: \(5(z+4)\)

ii. \(10y(6y+21)\div(2y+7)\)

Step 1: Factorise numerator:
\(6y+21 = 3(2y+7)\)
So numerator = \(10y \times 3 (2y+7) = 30y(2y+7)\)
Step 2: Divide by \((2y+7)\):
\(\frac{30y(2y+7)}{2y+7} = 30y\)
Answer: 30y

iii. \((a^2-14a-32)\div(a+2)\)

Step 1: Factorise numerator:
Find two numbers whose product = -32 and sum = -14 → -16 and 2
So, \(a^2-14a-32 = (a-16)(a+2)\)
Step 2: Divide by \((a+2)\):
\(\frac{(a-16)(a+2)}{(a+2)} = a-16\)
Answer: \(a-16\)

iv. \(39x^3(50x^2-98)\div26x^2(5x+7)\)

Step 1: Factorise 50x^2-98:
\(50x^2-98 = 2(25x^2-49) = 2(5x+7)(5x-7)\)
So numerator = \(39x^3 \cdot 2(5x+7)(5x-7) = 78x^3(5x+7)(5x-7)\)
Denominator = \(26x^2(5x+7)\)
Step 2: Simplify fraction:
\(\frac{78x^3(5x+7)(5x-7)}{26x^2(5x+7)} = 3x(5x-7)\)
Answer: \(3x(5x-7)\)



Share the Post:

Leave a Comment

Your email address will not be published. Required fields are marked *

Related Posts​

  • Area of Trapezium and a Polygon
    Step by Step solutions of Exercise: Test Yourself Concise Mathematics ICSE Class-8 Maths chapter 22- Area of Trapezium and a Polygon by Selina is provided.
  • Area of Trapezium and a Polygon
    Step by Step solutions of Exercise: 22-D Concise Mathematics ICSE Class-8 Maths chapter 22- Area of Trapezium and a Polygon by Selina is provided.

Join Our Newsletter

Name
Email
The form has been submitted successfully!
There has been some error while submitting the form. Please verify all form fields again.

Scroll to Top