Exercise: 4-B
Q1: Multiple Choice Type:
i. The cube root of 0.000027 is:
Step 1: Write 0.000027 in fractional form:
\[
0.000027 = \frac{27}{1000000}
\]Step 2: Find cube root of numerator and denominator separately:
\[
\sqrt[3]{27} = 3,\quad \sqrt[3]{1000000} = 100
\]So,
\[
\sqrt[3]{0.000027} = \frac{3}{100} = 0.03
\]Answer: a. 0.03
ii. The cube root of -0.064 is:
Step 1: Cube root of a negative number is negative
Step 2: Write -0.064 as a fraction:
\[
-0.064 = -\frac{64}{1000} \\
\sqrt[3]{64} = 4,\quad \sqrt[3]{1000} = 10
\]So,
\[
\sqrt[3]{-0.064} = -\frac{4}{10} = -0.4
\]Answer: d. -0.4
Q2: Find the cube-roots of:
i. 64
Step 1: Prime factorise 64:
\[
64 = 2 \times 2 \times 2 \times 2 \times 2 \times 2 = 2^6
\]
Step 2: Group in triples:
\[
2^6 = (2^3)^2 \\
\Rightarrow \sqrt[3]{64} = 2^2 = 4
\]
Answer: 4
ii. 343
Step 1: Prime factorise:
\[
343 = 7 \times 7 \times 7 = 7^3 \\
\Rightarrow \sqrt[3]{343} = 7
\]
Answer: 7
iii. 729
Step 1: Prime factorise:
\[
729 = 3 \times 3 \times 3 \times 3 \times 3 \times 3 = 3^6 \\
\Rightarrow \sqrt[3]{729} = 3^2 = 9
\]
Answer: 9
iv. 1728
Step 1: Prime factorise:
\[
1728 = 2^6 \times 3^3 \\
\Rightarrow \sqrt[3]{1728} = 2^2 \times 3 = 4 \times 3 = 12
\]
Answer: 12
v. 9261
Step 1: Prime factorise:
\[
9261 = 3 \times 3 \times 3 \times 7 \times 7 \times 7 = 3^3 \times 7^3 \\
\Rightarrow \sqrt[3]{9261} = 3 \times 7 = 21
\]
Answer: 21
vi. 4096
Step 1: Prime factorise:
\[
4096 = 2^{12} \\
\Rightarrow \sqrt[3]{4096} = 2^4 = 16 \quad \text{(since } 2^3 \times 2^3 \times 2^3 \times 2^3 = 4096)
\]
Answer: 16
vii. 8000
Step 1: Prime factorise:
\[
8000 = 2^6 \times 5^3 \\
\Rightarrow \sqrt[3]{8000} = 2^2 \times 5 = 4 \times 5 = 20
\]
Answer: 20
viii. 3375
Step 1: Prime factorise:
\[
3375 = 3^3 \times 5^3 \\
\Rightarrow \sqrt[3]{3375} = 3 \times 5 = 15
\]
Answer: 15
Q3: Find the cube-roots of:
i. \(\frac{27}{64}\)
Step 1: Prime factorise numerator and denominator:
\[
27 = 3^3,\quad 64 = 2^6 = (2^3)^2 \\
\sqrt[3]{\frac{27}{64}} = \frac{\sqrt[3]{3^3}}{\sqrt[3]{2^6}} = \frac{3}{2^2} = \frac{3}{4}
\]Answer: \(\frac{3}{4}\)
ii. \(\frac{125}{216}\)
Step 1: Prime factorise:
\[
125 = 5^3,\quad 216 = 2^3 \times 3^3 \\
\sqrt[3]{\frac{125}{216}} = \frac{5}{2 \times 3} = \frac{5}{6}
\]Answer: \(\frac{5}{6}\)
iii. \(\frac{343}{512}\)
Step 1: Prime factorise:
\[
343 = 7^3,\quad 512 = 2^9 = (2^3)^3 \\
\sqrt[3]{\frac{343}{512}} = \frac{7}{2^3} = \frac{7}{8}
\]Answer: \(\frac{7}{8}\)
iv. \(64 \times 729\)
Step 1: Prime factorise:
\[
64 = 2^6,\quad 729 = 3^6 \\
\Rightarrow 64 \times 729 = 2^6 \times 3^6 = (2^2 \times 3^2)^3 = 36^3 \\
\sqrt[3]{64 \times 729} = 36
\]Answer: 36
v. \(64 \times 27\)
Step 1: Prime factorise:
\[
64 = 2^6,\quad 27 = 3^3 \\
\Rightarrow 64 \times 27 = 2^6 \times 3^3 = (2^2)^3 \times 3^3 = (4 \times 3)^3 = 12^3 \\
\sqrt[3]{64 \times 27} = 12
\]Answer: 12
vi. \(729 \times 8000\)
Step 1: Prime factorise:
\[
729 = 3^6,\quad 8000 = 2^6 \times 5^3 \\
\Rightarrow 729 \times 8000 = 2^6 \times 3^6 \times 5^3 = (2^2 \times 3^2 \times 5)^3 = 180^3 \\
\sqrt[3]{729 \times 8000} = 180
\]Answer: 180
vii. \(3375 \times 512\)
Step 1: Prime factorise:
\[
3375 = 3^3 \times 5^3,\quad 512 = 2^9 \\
\Rightarrow 3375 \times 512 = 2^9 \times 3^3 \times 5^3 = (2^3 \times 3 \times 5)^3 = (8 \times 3 \times 5)^3 = 120^3 \\
\sqrt[3]{3375 \times 512} = 120
\]Answer: 120
Q4: Find the cube-roots of:
i. \(-216\)
Step 1: \(216 = 2^3 \times 3^3\)
\[
\sqrt[3]{-216} = -\sqrt[3]{216} = – (2 \times 3) = -6
\]
Answer: -6
ii. \(-512\)
Step 1: \(512 = 2^9 = (2^3)^3\)
\[
\sqrt[3]{-512} = -2^3 = -8
\]
Answer: -8
iii. \(-1331\)
Step 1: \(1331 = 11^3\)
\[
\sqrt[3]{-1331} = -11
\]
Answer: -11
iv. \(-\frac{27}{125}\)
Step 1: \(27 = 3^3,\quad 125 = 5^3\)
\[
\sqrt[3]{-\frac{27}{125}} = -\frac{3}{5}
\]
Answer: \(-\frac{3}{5}\)
v. \(\frac{-64}{343}\)
Step 1: \(64 = 2^6,\quad 343 = 7^3\)
\[
\sqrt[3]{\frac{-64}{343}} = -\frac{2^2}{7} = -\frac{4}{7}
\]
Answer: \(-\frac{4}{7}\)
vi. \(-\frac{512}{343}\)
Step 1: \(512 = 2^9,\quad 343 = 7^3\)
\[
\sqrt[3]{-\frac{512}{343}} = -\frac{2^3}{7} = -\frac{8}{7}
\]
Answer: \(-\frac{8}{7}\)
vii. \(-2197\)
Step 1: \(2197 = 13^3\)
\[
\sqrt[3]{-2197} = -13
\]
Answer: -13
viii. \(-5832\)
Step 1: \(5832 = 2^3 \times 3^6\)
\[
\sqrt[3]{-5832} = – (2 \times 3^2) = – (2 \times 9) = -18
\]
Answer: -18
ix. \(-2744000\)
Step 1: Ignore the negative sign for now and factorise 2744000
We write:
\[
2744000 = 2744 \times 1000
\]Now factorise:
\[
2744 = 2^3 \times 7^3 \quad (\text{since } 2744 = 14^3 = 2^3 \times 7^3) \\
1000 = 10^3 = (2 \times 5)^3 = 2^3 \times 5^3
\]So,
\[
2744000 = 2^3 \times 7^3 \times 2^3 \times 5^3 = 2^6 \times 5^3 \times 7^3
\]Group them:
\[
= (2^2 \times 5 \times 7)^3 = (4 \times 5 \times 7)^3 = (140)^3
\]Now include the negative sign:
\[
\sqrt[3]{-2744000} = -140
\]Answer: -140
Q5: Find the cube-roots of:
i. 2.744
Step 1: Convert to fraction:
\[
2.744 = \frac{2744}{1000}
\]
Step 2: Prime factorise:
\[
2744 = 14^3 = 2^3 \times 7^3,\quad 1000 = 10^3 = 2^3 \times 5^3 \\
\sqrt[3]{\frac{2744}{1000}} = \frac{14}{10} = 1.4
\]
Answer: 1.4
ii. 9.261
Step 1: Convert to fraction:
\[
9.261 = \frac{9261}{1000} \\
9261 = (3 \times 7)^3 = 21^3,\quad 1000 = 10^3 \\
\sqrt[3]{9.261} = \sqrt[3]{\frac{9261}{1000}} = \frac{21}{10} = 2.1
\]
Answer: 2.1
iii. 0.000027
Step 1: Convert to fraction:
\[
0.000027 = \frac{27}{1000000} \\
27 = 3^3,\quad 1000000 = (10^6) = (10^2)^3 = 100^3 \\
\sqrt[3]{0.000027} = \frac{3}{100} = 0.03
\]
Answer: 0.03
iv. -0.512
Step 1: Use cube root of positive 0.512 first:
\[
0.512 = \frac{512}{1000},\quad 512 = 8^3,\quad 1000 = 10^3 \\
\sqrt[3]{-0.512} = -\frac{8}{10} = -0.8
\]
Answer: -0.8
v. -15.625
Step 1: Convert to fraction:
\[
15.625 = \frac{15625}{1000} \\
15625 = 25^3 = (5^2)^3 = 5^6,\quad 1000 = 10^3 = 2^3 \times 5^3 \\
\sqrt[3]{-15.625} = -\sqrt[3]{\frac{15625}{1000}} = -\frac{25}{10} = -2.5
\]
Answer: -2.5
vi. \(-125 \times 1000\)
Step 1: Multiply:
\[
-125 \times 1000 = -125000 \\
125 = 5^3,\quad 1000 = 10^3 = (2 \times 5)^3 = 2^3 \times 5^3 \\
\Rightarrow 125000 = 2^3 \times 5^6 \\
\sqrt[3]{-125000} = – (2 \times 5^2) = – (2 \times 25) = -50
\]
Answer: -50
Q6: Find the smallest number by which 26244 should be divided so that the quotient is a perfect cube.
Step 1: Perform prime factorisation of 26244
\[
26244 \div 2 = 13122 \\
13122 \div 2 = 6561 \\
6561 \div 3 = 2187 \\
2187 \div 3 = 729 \\
729 \div 3 = 243 \\
243 \div 3 = 81 \\
81 \div 3 = 27 \\
27 \div 3 = 9 \\
9 \div 3 = 3 \\
3 \div 3 = 1
\]So,
\[
26244 = 2^2 \times 3^8
\]Step 2: To form a perfect cube, the power of each prime factor must be a multiple of 3.
→ \(2^2\) is not a cube (we need \(2^3\))
→ \(3^8\) is not a cube (we need \(3^6\) or \(3^9\))
To adjust:
→ Remove one \(3^2\) (since \(8 – 6 = 2\)), and one \(2^2\) to get cube form:
\[
\text{Divide by } 2^2 \times 3^2 = 4 \times 9 = 36
\]So,
\[
\frac{26244}{36} = 729 \\
729 = 3^6 = (3^2)^3 = 9^3 \\
\Rightarrow \text{Perfect cube}
\]Answer: 36
Q7: What is the least number by which 30375 should be multiplied to get a perfect cube?
Step 1: Perform prime factorisation of 30375
\[
30375 \div 5 = 6075 \\
6075 \div 5 = 1215 \\
1215 \div 5 = 243 \\
243 \div 3 = 81 \\
81 \div 3 = 27 \\
27 \div 3 = 9 \\
9 \div 3 = 3 \\
3 \div 3 = 1
\]So,
\[
30375 = 3^5 \times 5^3
\]Step 2: To form a perfect cube, all powers of prime factors must be multiples of 3.
→ \(3^5\) is not a perfect cube (we need \(3^6\), so multiply by one more 3)
→ \(5^3\) is already a perfect cube
Step 3: Multiply by 3 to make all powers multiples of 3:
\[
30375 \times 3 = 91125 \\
91125 = 3^6 \times 5^3 = (3^2)^3 \times 5^3 = (9 \times 5)^3 = 45^3 \\
\Rightarrow \text{Perfect cube}
\]Answer: 3
Q8: Find the cube-roots of:
i. \(700 \times 2 \times 49 \times 5\)
Step 1: Multiply the numbers:
\(700 = 2^2 \times 5^2 \times 7\),
\(49 = 7^2\),
Total product = \(700 \times 2 \times 49 \times 5 = (2^3 \times 5^3 \times 7^3)\)
\[
= (2 \times 5 \times 7)^3 = (70)^3 \\
\Rightarrow \sqrt[3]{700 \times 2 \times 49 \times 5} = 70
\]
Answer: 70
ii. \(-216 \times 1728\)
Step 1: Prime factorise:
\(216 = 2^3 \times 3^3,\quad 1728 = 2^6 \times 3^3\)
\[
-216 \times 1728 = – (2^9 \times 3^6) = – (2^3 \times 3^2)^3 = – (8 \times 9)^3 = -72 \\
\sqrt[3]{-216 \times 1728} = -72
\]
Answer: -72
iii. \(-64 \times -125\)
Step 1: \(-64 \times -125 = 8000\)
\[
8000 = 2^6 \times 5^3 = (2^2 \times 5)^3 = (4 \times 5)^3 = 20^3 \\
\sqrt[3]{8000} = 20
\]
Answer: 20
iv. \(-\frac{27}{343}\)
Step 1: Prime factors:
\[
27 = 3^3,\quad 343 = 7^3 \Rightarrow \sqrt[3]{-\frac{27}{343}} = -\frac{3}{7}
\]
Answer: \(-\frac{3}{7}\)
v. \(\frac{729}{-1331}\)
Step 1: Prime factors:
\[
729 = 3^6 = (3^2)^3,\quad 1331 = 11^3 \Rightarrow \sqrt[3]{\frac{729}{-1331}} = -\frac{9}{11}
\]
Answer: \(-\frac{9}{11}\)
vi. 250.047
Step 1: Check if it’s a cube of a decimal:
Try \(6.3^3 = 250.047\)
\[
6.3 \times 6.3 = 39.69 \quad \text{then} \quad 39.69 \times 6.3 = 250.047 \\
\Rightarrow \sqrt[3]{250.047} = 6.3
\]
Answer: 6.3
vii. \(-175616\)
Step 1: Prime factorise 175616:
\[
175616 = 2^5 \times 11^3 \Rightarrow (2 \times 11)^3 \times 2^2 = 22^3 \times 4 \text{ → not a perfect cube}
\]
Actually, 175616 = \(56^3\)
So,
\[
\sqrt[3]{-175616} = -56
\]
Answer: -56