Cube and Cube Roots

cube and cube roots class 8 selina

Step by Step solutions of Concise Mathematics ICSE Class-8 Maths chapter 4- Cube and Cube Roots by Selina is provided.

Table of Contents

Exercise: 4-B

Q1: Multiple Choice Type:

i. The cube root of 0.000027 is:

Step 1: Write 0.000027 in fractional form: \[ 0.000027 = \frac{27}{1000000} \]Step 2: Find cube root of numerator and denominator separately: \[ \sqrt[3]{27} = 3,\quad \sqrt[3]{1000000} = 100 \]So, \[ \sqrt[3]{0.000027} = \frac{3}{100} = 0.03 \]Answer: a. 0.03

ii. The cube root of -0.064 is:

Step 1: Cube root of a negative number is negative
Step 2: Write -0.064 as a fraction: \[ -0.064 = -\frac{64}{1000} \\ \sqrt[3]{64} = 4,\quad \sqrt[3]{1000} = 10 \]So, \[ \sqrt[3]{-0.064} = -\frac{4}{10} = -0.4 \]Answer: d. -0.4


Q2: Find the cube-roots of:

i. 64

Step 1: Prime factorise 64: \[ 64 = 2 \times 2 \times 2 \times 2 \times 2 \times 2 = 2^6 \] Step 2: Group in triples: \[ 2^6 = (2^3)^2 \\ \Rightarrow \sqrt[3]{64} = 2^2 = 4 \] Answer: 4

ii. 343

Step 1: Prime factorise: \[ 343 = 7 \times 7 \times 7 = 7^3 \\ \Rightarrow \sqrt[3]{343} = 7 \] Answer: 7

iii. 729

Step 1: Prime factorise: \[ 729 = 3 \times 3 \times 3 \times 3 \times 3 \times 3 = 3^6 \\ \Rightarrow \sqrt[3]{729} = 3^2 = 9 \] Answer: 9

iv. 1728

Step 1: Prime factorise: \[ 1728 = 2^6 \times 3^3 \\ \Rightarrow \sqrt[3]{1728} = 2^2 \times 3 = 4 \times 3 = 12 \] Answer: 12

v. 9261

Step 1: Prime factorise: \[ 9261 = 3 \times 3 \times 3 \times 7 \times 7 \times 7 = 3^3 \times 7^3 \\ \Rightarrow \sqrt[3]{9261} = 3 \times 7 = 21 \] Answer: 21

vi. 4096

Step 1: Prime factorise: \[ 4096 = 2^{12} \\ \Rightarrow \sqrt[3]{4096} = 2^4 = 16 \quad \text{(since } 2^3 \times 2^3 \times 2^3 \times 2^3 = 4096) \] Answer: 16

vii. 8000

Step 1: Prime factorise: \[ 8000 = 2^6 \times 5^3 \\ \Rightarrow \sqrt[3]{8000} = 2^2 \times 5 = 4 \times 5 = 20 \] Answer: 20

viii. 3375

Step 1: Prime factorise: \[ 3375 = 3^3 \times 5^3 \\ \Rightarrow \sqrt[3]{3375} = 3 \times 5 = 15 \] Answer: 15


Q3: Find the cube-roots of:

i. \(\frac{27}{64}\)

Step 1: Prime factorise numerator and denominator: \[ 27 = 3^3,\quad 64 = 2^6 = (2^3)^2 \\ \sqrt[3]{\frac{27}{64}} = \frac{\sqrt[3]{3^3}}{\sqrt[3]{2^6}} = \frac{3}{2^2} = \frac{3}{4} \]Answer: \(\frac{3}{4}\)

ii. \(\frac{125}{216}\)

Step 1: Prime factorise: \[ 125 = 5^3,\quad 216 = 2^3 \times 3^3 \\ \sqrt[3]{\frac{125}{216}} = \frac{5}{2 \times 3} = \frac{5}{6} \]Answer: \(\frac{5}{6}\)

iii. \(\frac{343}{512}\)

Step 1: Prime factorise: \[ 343 = 7^3,\quad 512 = 2^9 = (2^3)^3 \\ \sqrt[3]{\frac{343}{512}} = \frac{7}{2^3} = \frac{7}{8} \]Answer: \(\frac{7}{8}\)

iv. \(64 \times 729\)

Step 1: Prime factorise: \[ 64 = 2^6,\quad 729 = 3^6 \\ \Rightarrow 64 \times 729 = 2^6 \times 3^6 = (2^2 \times 3^2)^3 = 36^3 \\ \sqrt[3]{64 \times 729} = 36 \]Answer: 36

v. \(64 \times 27\)

Step 1: Prime factorise: \[ 64 = 2^6,\quad 27 = 3^3 \\ \Rightarrow 64 \times 27 = 2^6 \times 3^3 = (2^2)^3 \times 3^3 = (4 \times 3)^3 = 12^3 \\ \sqrt[3]{64 \times 27} = 12 \]Answer: 12

vi. \(729 \times 8000\)

Step 1: Prime factorise: \[ 729 = 3^6,\quad 8000 = 2^6 \times 5^3 \\ \Rightarrow 729 \times 8000 = 2^6 \times 3^6 \times 5^3 = (2^2 \times 3^2 \times 5)^3 = 180^3 \\ \sqrt[3]{729 \times 8000} = 180 \]Answer: 180

vii. \(3375 \times 512\)

Step 1: Prime factorise: \[ 3375 = 3^3 \times 5^3,\quad 512 = 2^9 \\ \Rightarrow 3375 \times 512 = 2^9 \times 3^3 \times 5^3 = (2^3 \times 3 \times 5)^3 = (8 \times 3 \times 5)^3 = 120^3 \\ \sqrt[3]{3375 \times 512} = 120 \]Answer: 120


Q4: Find the cube-roots of:

i. \(-216\)

Step 1: \(216 = 2^3 \times 3^3\) \[ \sqrt[3]{-216} = -\sqrt[3]{216} = – (2 \times 3) = -6 \] Answer: -6

ii. \(-512\)

Step 1: \(512 = 2^9 = (2^3)^3\) \[ \sqrt[3]{-512} = -2^3 = -8 \] Answer: -8

iii. \(-1331\)

Step 1: \(1331 = 11^3\) \[ \sqrt[3]{-1331} = -11 \] Answer: -11

iv. \(-\frac{27}{125}\)

Step 1: \(27 = 3^3,\quad 125 = 5^3\) \[ \sqrt[3]{-\frac{27}{125}} = -\frac{3}{5} \] Answer: \(-\frac{3}{5}\)

v. \(\frac{-64}{343}\)

Step 1: \(64 = 2^6,\quad 343 = 7^3\) \[ \sqrt[3]{\frac{-64}{343}} = -\frac{2^2}{7} = -\frac{4}{7} \] Answer: \(-\frac{4}{7}\)

vi. \(-\frac{512}{343}\)

Step 1: \(512 = 2^9,\quad 343 = 7^3\) \[ \sqrt[3]{-\frac{512}{343}} = -\frac{2^3}{7} = -\frac{8}{7} \] Answer: \(-\frac{8}{7}\)

vii. \(-2197\)

Step 1: \(2197 = 13^3\) \[ \sqrt[3]{-2197} = -13 \] Answer: -13

viii. \(-5832\)

Step 1: \(5832 = 2^3 \times 3^6\) \[ \sqrt[3]{-5832} = – (2 \times 3^2) = – (2 \times 9) = -18 \] Answer: -18

ix. \(-2744000\)

Step 1: Ignore the negative sign for now and factorise 2744000
We write: \[ 2744000 = 2744 \times 1000 \]Now factorise: \[ 2744 = 2^3 \times 7^3 \quad (\text{since } 2744 = 14^3 = 2^3 \times 7^3) \\ 1000 = 10^3 = (2 \times 5)^3 = 2^3 \times 5^3 \]So, \[ 2744000 = 2^3 \times 7^3 \times 2^3 \times 5^3 = 2^6 \times 5^3 \times 7^3 \]Group them: \[ = (2^2 \times 5 \times 7)^3 = (4 \times 5 \times 7)^3 = (140)^3 \]Now include the negative sign: \[ \sqrt[3]{-2744000} = -140 \]Answer: -140


Q5: Find the cube-roots of:

i. 2.744

Step 1: Convert to fraction: \[ 2.744 = \frac{2744}{1000} \] Step 2: Prime factorise: \[ 2744 = 14^3 = 2^3 \times 7^3,\quad 1000 = 10^3 = 2^3 \times 5^3 \\ \sqrt[3]{\frac{2744}{1000}} = \frac{14}{10} = 1.4 \] Answer: 1.4

ii. 9.261

Step 1: Convert to fraction: \[ 9.261 = \frac{9261}{1000} \\ 9261 = (3 \times 7)^3 = 21^3,\quad 1000 = 10^3 \\ \sqrt[3]{9.261} = \sqrt[3]{\frac{9261}{1000}} = \frac{21}{10} = 2.1 \] Answer: 2.1

iii. 0.000027

Step 1: Convert to fraction: \[ 0.000027 = \frac{27}{1000000} \\ 27 = 3^3,\quad 1000000 = (10^6) = (10^2)^3 = 100^3 \\ \sqrt[3]{0.000027} = \frac{3}{100} = 0.03 \] Answer: 0.03

iv. -0.512

Step 1: Use cube root of positive 0.512 first: \[ 0.512 = \frac{512}{1000},\quad 512 = 8^3,\quad 1000 = 10^3 \\ \sqrt[3]{-0.512} = -\frac{8}{10} = -0.8 \] Answer: -0.8

v. -15.625

Step 1: Convert to fraction: \[ 15.625 = \frac{15625}{1000} \\ 15625 = 25^3 = (5^2)^3 = 5^6,\quad 1000 = 10^3 = 2^3 \times 5^3 \\ \sqrt[3]{-15.625} = -\sqrt[3]{\frac{15625}{1000}} = -\frac{25}{10} = -2.5 \] Answer: -2.5

vi. \(-125 \times 1000\)

Step 1: Multiply: \[ -125 \times 1000 = -125000 \\ 125 = 5^3,\quad 1000 = 10^3 = (2 \times 5)^3 = 2^3 \times 5^3 \\ \Rightarrow 125000 = 2^3 \times 5^6 \\ \sqrt[3]{-125000} = – (2 \times 5^2) = – (2 \times 25) = -50 \] Answer: -50


Q6: Find the smallest number by which 26244 should be divided so that the quotient is a perfect cube.

Step 1: Perform prime factorisation of 26244 \[ 26244 \div 2 = 13122 \\ 13122 \div 2 = 6561 \\ 6561 \div 3 = 2187 \\ 2187 \div 3 = 729 \\ 729 \div 3 = 243 \\ 243 \div 3 = 81 \\ 81 \div 3 = 27 \\ 27 \div 3 = 9 \\ 9 \div 3 = 3 \\ 3 \div 3 = 1 \]So, \[ 26244 = 2^2 \times 3^8 \]Step 2: To form a perfect cube, the power of each prime factor must be a multiple of 3.
→ \(2^2\) is not a cube (we need \(2^3\))
→ \(3^8\) is not a cube (we need \(3^6\) or \(3^9\))
To adjust:
→ Remove one \(3^2\) (since \(8 – 6 = 2\)), and one \(2^2\) to get cube form: \[ \text{Divide by } 2^2 \times 3^2 = 4 \times 9 = 36 \]So, \[ \frac{26244}{36} = 729 \\ 729 = 3^6 = (3^2)^3 = 9^3 \\ \Rightarrow \text{Perfect cube} \]Answer: 36


Q7: What is the least number by which 30375 should be multiplied to get a perfect cube?

Step 1: Perform prime factorisation of 30375 \[ 30375 \div 5 = 6075 \\ 6075 \div 5 = 1215 \\ 1215 \div 5 = 243 \\ 243 \div 3 = 81 \\ 81 \div 3 = 27 \\ 27 \div 3 = 9 \\ 9 \div 3 = 3 \\ 3 \div 3 = 1 \]So, \[ 30375 = 3^5 \times 5^3 \]Step 2: To form a perfect cube, all powers of prime factors must be multiples of 3.
→ \(3^5\) is not a perfect cube (we need \(3^6\), so multiply by one more 3)
→ \(5^3\) is already a perfect cube
Step 3: Multiply by 3 to make all powers multiples of 3: \[ 30375 \times 3 = 91125 \\ 91125 = 3^6 \times 5^3 = (3^2)^3 \times 5^3 = (9 \times 5)^3 = 45^3 \\ \Rightarrow \text{Perfect cube} \]Answer: 3


Q8: Find the cube-roots of:

i. \(700 \times 2 \times 49 \times 5\)

Step 1: Multiply the numbers:
\(700 = 2^2 \times 5^2 \times 7\),
\(49 = 7^2\),
Total product = \(700 \times 2 \times 49 \times 5 = (2^3 \times 5^3 \times 7^3)\) \[ = (2 \times 5 \times 7)^3 = (70)^3 \\ \Rightarrow \sqrt[3]{700 \times 2 \times 49 \times 5} = 70 \] Answer: 70

ii. \(-216 \times 1728\)

Step 1: Prime factorise:
\(216 = 2^3 \times 3^3,\quad 1728 = 2^6 \times 3^3\) \[ -216 \times 1728 = – (2^9 \times 3^6) = – (2^3 \times 3^2)^3 = – (8 \times 9)^3 = -72 \\ \sqrt[3]{-216 \times 1728} = -72 \] Answer: -72

iii. \(-64 \times -125\)

Step 1: \(-64 \times -125 = 8000\) \[ 8000 = 2^6 \times 5^3 = (2^2 \times 5)^3 = (4 \times 5)^3 = 20^3 \\ \sqrt[3]{8000} = 20 \] Answer: 20

iv. \(-\frac{27}{343}\)

Step 1: Prime factors: \[ 27 = 3^3,\quad 343 = 7^3 \Rightarrow \sqrt[3]{-\frac{27}{343}} = -\frac{3}{7} \] Answer: \(-\frac{3}{7}\)

v. \(\frac{729}{-1331}\)

Step 1: Prime factors: \[ 729 = 3^6 = (3^2)^3,\quad 1331 = 11^3 \Rightarrow \sqrt[3]{\frac{729}{-1331}} = -\frac{9}{11} \] Answer: \(-\frac{9}{11}\)

vi. 250.047

Step 1: Check if it’s a cube of a decimal:
Try \(6.3^3 = 250.047\) \[ 6.3 \times 6.3 = 39.69 \quad \text{then} \quad 39.69 \times 6.3 = 250.047 \\ \Rightarrow \sqrt[3]{250.047} = 6.3 \] Answer: 6.3

vii. \(-175616\)

Step 1: Prime factorise 175616: \[ 175616 = 2^5 \times 11^3 \Rightarrow (2 \times 11)^3 \times 2^2 = 22^3 \times 4 \text{ → not a perfect cube} \] Actually, 175616 = \(56^3\)
So, \[ \sqrt[3]{-175616} = -56 \] Answer: -56


previous
next

Share the Post:

Leave a Comment

Your email address will not be published. Required fields are marked *

Related Posts​

  • Identities
    Step by Step solutions of Test Yourself Concise Mathematics ICSE Class-8 Maths chapter 12- Identities by Selina is provided.
  • Identities
    Step by Step solutions of Exercise- 12B Concise Mathematics ICSE Class-8 Maths chapter 12- Identities by Selina is provided.

Join Our Newsletter

Name
Email
The form has been submitted successfully!
There has been some error while submitting the form. Please verify all form fields again.

Scroll to Top