Factorisation

factorisation class 8 selina

Step by Step solutions of Exercise: 13-C Concise Mathematics ICSE Class-8 Maths chapter 13- Factorisation by Selina is provided.

Table of Contents

Exercise: 13-C

Q1: Multiple Choice Type

i. \(x^2 – 9x – 10\) is equal to:

Step 1: Product = \(1\times(-10)=-10\), Sum = \(-9\).
Step 2: Two numbers: \(-10\) and \(+1\).
Step 3: Factorise: \[ x^2 – 9x – 10 = (x-10)(x+1) \]Answer: a. \((x-10)(x+1)\)

ii. \(x^2 – 23x + 42\) is equal to:

Step 1: Product = \(1\times42=42\), Sum = \(-23\).
Step 2: Two numbers: \(-21\) and \(-2\).
Step 3: Factorise: \[ x^2 – 23x + 42 = (x-21)(x-2) \]Answer: b. \((x-21)(x-2)\)

iii. \((4x^2 – 4x + 1)÷(2x – 1)\) is equal to:

Step 1: Observe numerator: \[ 4x^2 – 4x + 1 = (2x – 1)^2 \]Step 2: Divide: \[ \frac{(2x – 1)^2}{2x – 1} = 2x – 1 \]Answer: b. \(2x – 1\)

iv. \((x+y)^2 – 3(x+y) – 4\) is equal to:

Step 1: Put \(t = x+y\). Then expression becomes \(t^2 – 3t – 4\).
Step 2: Factorise \(t^2 – 3t – 4 = (t-4)(t+1)\).
Step 3: Substitute back \(t = x+y\): \[ (x+y-4)(x+y+1) \]Answer: c. \((x+y-4)(x+y+1)\)

v. \(60 + 11x – x^2\) is equal to:

Step 1: Rearrange: \[ 60 + 11x – x^2 = -(x^2 – 11x – 60) \]Step 2: Factor inside: find numbers with product \(-60\) and sum \(-11\): \(-15\) and \(+4\). \[ x^2 – 11x – 60 = (x-15)(x+4) \]Step 3: Apply negative sign: \[ -(x-15)(x+4) = (15-x)(x+4) = (x+4)(15-x) \]Answer: a. \((x+4)(15-x)\)


Q2: \(a^2 + 5a + 6\)

Step 1: Product = \(1 \times 6 = 6\), Sum = \(5\).
Step 2: Numbers = \(2\) and \(3\).
Step 3: Split the middle term: \[ a^2 + 5a + 6 = a^2 + 2a + 3a + 6 \]Step 4: Group terms: \[ = (a^2 + 2a) + (3a + 6) \\ = a(a+2) + 3(a+2) \]Step 5: Factor common binomial: \[ = (a+2)(a+3) \]Answer: \((a+2)(a+3)\)


Q3: \(a^2 – 5a + 6\)

Step 1: Product = \(1 \times 6 = 6\), Sum = \(-5\).
Step 2: Numbers = \(-2\) and \(-3\).
Step 3: Split the middle term: \[ a^2 – 5a + 6 = a^2 – 2a – 3a + 6 \]Step 4: Group terms: \[ = (a^2 – 2a) – (3a – 6) \\ = a(a-2) – 3(a-2) \]Step 5: Factor common binomial: \[ = (a-2)(a-3) \]Answer: \((a-2)(a-3)\)


Q4: \(a^2 + 5a – 6\)

Step 1: Product = \(1 \times -6 = -6\), Sum = \(+5\).
Step 2: Numbers = \(+6\) and \(-1\).
Step 3: Split the middle term: \[ a^2 + 5a – 6 = a^2 + 6a – a – 6 \]Step 4: Group terms: \[ = (a^2 + 6a) – (a + 6) \\ = a(a+6) – 1(a+6) \]Step 5: Factor common binomial: \[ = (a+6)(a-1) \]Answer: \((a+6)(a-1)\)


Q5: \(x^2 + 5xy + 4y^2\)

Step 1: Product = \(1 \times 4 = 4\), Sum = \(+5\).
Step 2: Numbers = \(+4\) and \(+1\).
Step 3: Split the middle term: \[ x^2 + 5xy + 4y^2 = x^2 + 4xy + xy + 4y^2 \]Step 4: Group terms: \[ = (x^2 + 4xy) + (xy + 4y^2) \\ = x(x+4y) + y(x+4y) \]Step 5: Factor common binomial: \[ = (x+y)(x+4y) \]Answer: \((x+y)(x+4y)\)


Q6: \(a^2 – 3a – 40\)

Step 1: Product = \(1 \times -40 = -40\), Sum = \(-3\).
Step 2: Numbers = \(-8\) and \(+5\).
Step 3: Split the middle term: \[ a^2 – 3a – 40 = a^2 – 8a + 5a – 40 \]Step 4: Group terms: \[ = (a^2 – 8a) + (5a – 40) \\ = a(a – 8) + 5(a – 8) \]Step 5: Factor common binomial: \[ = (a+5)(a-8) \]Answer: \((a+5)(a-8)\)


Q7: \(x^2 – x – 72\)

Step 1: Product = \(1 \times -72 = -72\), Sum = \(-1\).
Step 2: Numbers = \(-9\) and \(+8\).
Step 3: Split the middle term: \[ x^2 – x – 72 = x^2 – 9x + 8x – 72 \]Step 4: Group terms: \[ = (x^2 – 9x) + (8x – 72) \\ = x(x – 9) + 8(x – 9) \]Step 5: Factor common binomial: \[ = (x+8)(x-9) \]Answer: \((x+8)(x-9)\)


Q8: \(3a^2 – 5a + 2\)

Step 1: Product = \(3 \times 2 = 6\), Sum = \(-5\).
Step 2: Numbers = \(-3\) and \(-2\).
Step 3: Split the middle term: \[ 3a^2 – 5a + 2 = 3a^2 – 3a – 2a + 2 \]Step 4: Group terms: \[ = (3a^2 – 3a) – (2a – 2) \\ = 3a(a – 1) – 2(a – 1) \]Step 5: Factor common binomial: \[ = (3a – 2)(a – 1) \]Answer: \((3a – 2)(a – 1)\)


Q9: \(2a^2 – 17ab + 26b^2\)

Step 1: Multiply \(2 \times 26 = 52\). We need two numbers whose product = \(52\) and sum = \(-17\).
Numbers are \(-13\) and \(-4\).
Step 2: Split the middle term: \[ 2a^2 – 17ab + 26b^2 = 2a^2 – 13ab – 4ab + 26b^2 \]Step 3: Group terms: \[ = (2a^2 – 13ab) – (4ab – 26b^2) \]Step 4: Factorise each group: \[ = a(2a – 13b) – 2b(2a – 13b) \]Step 5: Take out common binomial: \[ = (a – 2b)(2a – 13b) \]Answer: \((a – 2b)(2a – 13b)\)


Q10: \(2x^2 + xy – 6y^2\)

Step 1: Multiply \(2 \times -6 = -12\). We need two numbers whose product = \(-12\) and sum = \(1\) (coefficient of \(xy\)).
Numbers are \(4\) and \(-3\).
Step 2: Split the middle term: \[ 2x^2 + xy – 6y^2 = 2x^2 + 4xy – 3xy – 6y^2 \]Step 3: Group terms: \[ = (2x^2 + 4xy) – (3xy + 6y^2) \]Step 4: Factorise each group: \[ = 2x(x+2y) – 3y(x+2y) \]Step 5: Take out common binomial: \[ = (2x – 3y)(x + 2y) \]Answer: \((2x – 3y)(x + 2y)\)


Q11: \(4c^2 + 3c – 10\)

Step 1: Multiply coefficient of \(c^2\) and constant: \[ 4 \times (-10) = -40 \]Step 2: Find two numbers whose product = \(-40\) and sum = \(+3\).
Numbers: \(8\) and \(-5\).
Step 3: Split the middle term using those numbers: \[ 4c^2 + 3c – 10 = 4c^2 + 8c – 5c – 10 \]Step 4: Group terms: \[ (4c^2 + 8c) – (5c + 10) \]Step 5: Factor each group: \[ 4c(c+2) – 5(c+2) \]Step 6: Factor out the common binomial \((c+2)\): \[ (4c – 5)(c + 2) \]Answer: \((4c – 5)(c + 2)\)


Q12: \(14x^2 + x – 3\)

Step 1: Multiply coefficient of \(x^2\) and constant: \[ 14 \times (-3) = -42 \]Step 2: Find two numbers whose product = \(-42\) and sum = \(+1\).
Numbers: \(7\) and \(-6\).
Step 3: Split the middle term using those numbers: \[ 14x^2 + 7x – 6x – 3 \]Step 4: Group terms: \[ (14x^2 + 7x) – (6x + 3) \]Step 5: Factor each group: \[ 7x(2x+1) – 3(2x+1) \]Step 6: Factor out the common binomial \((2x+1)\): \[ (7x – 3)(2x + 1) \]Answer: \((7x – 3)(2x + 1)\)


Q13: \(6 + 7b – 3b^2\)

Step 1: Write the trinomial in standard quadratic form. \[-3b^2 + 7b + 6\]Step 2: Take out \(-1\) common from the expression. \[-(3b^2 – 7b – 6)\]Step 3: Multiply the coefficient of \(b^2\) with the constant term: \(3 \times -6 = -18\).
Now, find two numbers whose product = \(-18\) and sum = \(-7\).
These numbers are \(-9\) and \(2\).
Step 4: Split the middle term using \(-9\) and \(2\). \[-(3b^2 – 9b + 2b – 6)\]Step 5: Group the terms. \[-\big[(3b^2 – 9b) + (2b – 6)\big]\]Step 6: Take out common factors from each group. \[-\big[3b(b – 3) + 2(b – 3)\big]\]Step 7: Take out \((b – 3)\) as common. \[-(3b + 2)(b – 3)\]Step 8: Simplify the negative sign. \[(3b + 2)(3 – b)\]Answer: (3b + 2)(3 – b)


Q14: \(5 + 7x – 6x^2\)

Step 1: Write the trinomial in standard quadratic form. \[-6x^2 + 7x + 5\]Step 2: Take out \(-1\) common from the expression. \[-(6x^2 – 7x – 5)\]Step 3: Multiply the coefficient of \(x^2\) with the constant term: \(6 \times -5 = -30\).
Now, find two numbers whose product = \(-30\) and sum = \(-7\).
These numbers are \(-10\) and \(3\).
Step 4: Split the middle term using \(-10\) and \(3\). \[-(6x^2 – 10x + 3x – 5)\]Step 5: Group the terms. \[-\big[(6x^2 – 10x) + (3x – 5)\big]\]Step 6: Take out common factors from each group. \[-\big[2x(3x – 5) + 1(3x – 5)\big]\]Step 7: Take out \((3x – 5)\) as common. \[-(2x + 1)(3x – 5)\]Step 8: Simplify the negative sign. \[(2x + 1)(5 – 3x)\]Answer: (2x + 1)(5 – 3x)


Q15: \(4 + y – 14y^2\)

Step 1: Write the trinomial in standard quadratic form. \[-14y^2 + y + 4\]Step 2: Take out \(-1\) common to make the coefficient of \(y^2\) positive. \[-(14y^2 – y – 4)\]Step 3: Multiply the coefficient of \(y^2\) with the constant term: \(14 \times -4 = -56\).
Now, find two numbers whose product = \(-56\) and sum = \(-1\).
These numbers are \(-8\) and \(7\).
Step 4: Split the middle term using \(-8\) and \(7\). \[-(14y^2 – 8y + 7y – 4)\]Step 5: Group the terms. \[-\big[(14y^2 – 8y) + (7y – 4)\big]\]Step 6: Take out common factors from each group. \[-\big[2y(7y – 4) + 1(7y – 4)\big]\]Step 7: Take out \((7y – 4)\) as common. \[-(2y + 1)(7y – 4)\]Step 8: Simplify the negative sign. \[(2y + 1)(4 – 7y)\]Answer: (2y + 1)(4 – 7y)


Q16: \(5 + 3a – 14a^2\)

Step 1: Write the trinomial in standard quadratic form. \[-14a^2 + 3a + 5\]Step 2: Take out \(-1\) common to make the coefficient of \(a^2\) positive. \[-(14a^2 – 3a – 5)\]Step 3: Multiply the coefficient of \(a^2\) with the constant term: \(14 \times -5 = -70\).
Now, find two numbers whose product = \(-70\) and sum = \(-3\).
These numbers are \(-10\) and \(7\).
Step 4: Split the middle term using \(-10\) and \(7\). \[-(14a^2 – 10a + 7a – 5)\]Step 5: Group the terms. \[-\big[(14a^2 – 10a) + (7a – 5)\big]\]Step 6: Take out common factors from each group. \[-\big[2a(7a – 5) + 1(7a – 5)\big]\]Step 7: Take out \((7a – 5)\) as common. \[-(2a + 1)(7a – 5)\]Step 8: Simplify the negative sign. \[(2a + 1)(5 – 7a)\]Answer: (2a + 1)(5 – 7a)


Q17: \((2a+b)^2 + 5(2a+b) + 6\)

Step 1: Write the trinomial clearly:
\((2a+b)^2 + 5(2a+b) + 6\)
Step 2: Factorise the quadratic in \((2a+b)\) by splitting the middle term:
Find two numbers whose product = 6 (coefficient of constant term) and sum = 5 (coefficient of \((2a+b)\)) → 2 and 3
Step 3: Split the middle term using 2 and 3:
\((2a+b)^2 + 2(2a+b) + 3(2a+b) + 6\)
Step 4: Group terms and factorise each group:
\(((2a+b)^2 + 2(2a+b)) + (3(2a+b) + 6) = (2a+b)((2a+b)+2) + 3((2a+b)+2)\)
Step 5: Factor out the common factor \(((2a+b)+2)\):
\(((2a+b)+2)((2a+b)+3) = (2a+b+2)(2a+b+3)\)
Answer: (2a+b+2)(2a+b+3)


Q18: \(1 – (2x+3y) – 6(2x+3y)^2\)

Step 1: Rewrite the trinomial in standard quadratic form:
\(-6(2x+3y)^2 – (2x+3y) + 1\)
Step 2: Factor out \(-1\) to make the leading coefficient positive:
\(-1 \cdot \left(6(2x+3y)^2 + (2x+3y) – 1\right)\)
Step 3: Factorise the quadratic in \((2x+3y)\) by splitting the middle term:
\(6(2x+3y)^2 + 3(2x+3y) – 2(2x+3y) – 1 = (6(2x+3y)^2 + 3(2x+3y)) – (2(2x+3y) + 1) = 3(2x+3y)(2(2x+3y)+1) – 1(2(2x+3y)+1) = (3(2x+3y)-1)(2(2x+3y)+1)\)
Step 4: Include the \(-1\) factor:
\(-1 \cdot (3(2x+3y)-1)(2(2x+3y)+1) = (-3(2x+3y)+1)(2(2x+3y)+1) = (1-6x-9y)(4x+6y+1)\)
Answer: \((1-6x-9y)(4x+6y+1)\)


Q19: \((x-2y)^2 – 12(x-2y) + 32\)

Step 1: Write the trinomial clearly:
\((x-2y)^2 – 12(x-2y) + 32\)
Step 2: Factor the quadratic by splitting the middle term:
Find two numbers whose product = 32 (constant term) and sum = -12 (coefficient of \((x-2y)\)) → -8 and -4
Step 3: Split the middle term using -8 and -4:
\((x-2y)^2 – 8(x-2y) – 4(x-2y) + 32\)
Step 4: Group terms and factorise each group:
\(((x-2y)^2 – 8(x-2y)) – (4(x-2y) – 32) = (x-2y)((x-2y)-8) – 4((x-2y)-8)\)
Step 5: Factor out the common factor \(((x-2y)-8)\):
\(((x-2y)-8)((x-2y)-4) = (x-2y-8)(x-2y-4)\)
Answer: (x-2y-8)(x-2y-4)


Q20: \(8 + 6(a+b) – 5(a+b)^2\)

Step 1: Rewrite the trinomial in standard quadratic form:
\(-5(a+b)^2 + 6(a+b) + 8\)
Step 2: Factor out \(-1\) to make the leading coefficient positive:
\(-1 \cdot \left(5(a+b)^2 – 6(a+b) – 8\right)\)
Step 3: Factor the quadratic in \((a+b)\) by splitting the middle term:
Find two numbers whose product = 5×(-8) = -40 and sum = -6 → 4 and -10
\(\Rightarrow 5(a+b)^2 + 4(a+b) – 10(a+b) – 8\)
Step 4: Group terms and factorise:
\([5(a+b)^2 + 4(a+b)] – [10(a+b) + 8] = (a+b)(5(a+b)+4) – 2(5(a+b)+4)\)
Step 5: Factor out the common factor \((5(a+b)+4)\):
\((5(a+b)+4)((a+b)-2) = (4 + 5a + 5b)(2 – a – b)\)
Answer: (4+5a+5b)(2-a-b)


Q21: \(2(x+2y)^2 – 5(x+2y) + 2\)

Step 1: Treat \((x+2y)\) as a single variable for factoring:
\(2(x+2y)^2 – 5(x+2y) + 2\)
Step 2: Multiply the leading coefficient and constant term: 2 × 2 = 4.
We need two numbers whose product = 4 and sum = -5 → -4 and -1
Step 3: Split the middle term using -4 and -1:
\(2(x+2y)^2 – 4(x+2y) – (x+2y) + 2\)
Step 4: Group terms and factor each group:
\([2(x+2y)^2 – 4(x+2y)] – [(x+2y) – 2] = 2(x+2y)((x+2y)-2) -1((x+2y)-2)\)
Step 5: Factor out the common factor \(((x+2y)-2)\):
\(((x+2y)-2)(2(x+2y)-1) = (x+2y-2)(2x+4y-1)\)
Answer: (x+2y-2)(2x+4y-1)


Q22: In each case, find whether the trinomial is a perfect square or not:

i. \(x^2 + 14x + 49\)

Step 1: Check if first term and last term are perfect squares:
\(x^2 = (x)^2\), \(49 = 7^2\)
Step 2: Check if middle term = \(2 \times x \times 7 = 14x\)
Answer: Yes, perfect square: \((x+7)^2\)

ii. \(a^2 – 10a + 25\)

Step 1: \(a^2 = (a)^2\), \(25 = 5^2\)
Step 2: Check middle term: \(2 \cdot a \cdot 5 = 10a\), sign = negative → \(-10a\)
Answer: Yes, perfect square: \((a-5)^2\)

iii. \(4x^2 + 4x + 1\)

Step 1: \(4x^2 = (2x)^2\), \(1 = 1^2\)
Step 2: Check middle term: \(2 \cdot 2x \cdot 1 = 4x\)
Answer: Yes, perfect square: \((2x+1)^2\)

iv. \(9b^2 + 12b + 16\)

Step 1: \(9b^2 = (3b)^2\), \(16 = 4^2\)
Step 2: Check middle term: \(2 \cdot 3b \cdot 4 = 24b\), actual = 12b → does not match
Answer: No, not a perfect square

v. \(16x^2 – 16xy + y^2\)

Step 1: \(16x^2 = (4x)^2\), \(y^2 = (y)^2\)
Step 2: Check middle term: \(2 \cdot 4x \cdot y = 8xy\), actual = -16xy → does not match
Answer: No, not a perfect square

vi. \(x^2 – 4x + 16\)

Step 1: \(x^2 = (x)^2\), \(16 = 4^2\)
Step 2: Check middle term: \(2 \cdot x \cdot 4 = 8x\), actual = -4x → does not match
Answer: No, not a perfect square



Share the Post:

Leave a Comment

Your email address will not be published. Required fields are marked *

Related Posts​

  • Area of Trapezium and a Polygon
    Step by Step solutions of Exercise: Test Yourself Concise Mathematics ICSE Class-8 Maths chapter 22- Area of Trapezium and a Polygon by Selina is provided.
  • Area of Trapezium and a Polygon
    Step by Step solutions of Exercise: 22-D Concise Mathematics ICSE Class-8 Maths chapter 22- Area of Trapezium and a Polygon by Selina is provided.

Join Our Newsletter

Name
Email
The form has been submitted successfully!
There has been some error while submitting the form. Please verify all form fields again.

Scroll to Top