Factorisation

factorisation class 8 selina

Step by Step solutions of Exercise: 13-B Concise Mathematics ICSE Class-8 Maths chapter 13- Factorisation by Selina is provided.

Table of Contents

Exercise: 13-B

Q1: Multiple Choice Type

i. \(\left(2x+y\right)^2-\left(2y+x\right)^2\) is equal to:

Step 1: Recall the formula for difference of squares: \(p^2 – q^2 = (p-q)(p+q)\) \[ (2x+y)^2 – (2y+x)^2 \]Step 2: Identify \(p = 2x+y\) and \(q = 2y+x\), then apply the formula. \[ (2x+y-(2y+x))((2x+y)+(2y+x)) = (x-y)(3x+3y) \]Step 3: Factor out 3 from the second bracket. \[ (x-y)3(x+y) = 3(x+y)(x-y) \]Answer: a. 3(x+y)(x-y)

ii. \(49-\left(x+5\right)^2\) is equal to:

Step 1: Recognise \(49 – (x+5)^2\) as \(7^2 – (x+5)^2\).
Step 2: Apply difference of squares formula. \[ 7^2 – (x+5)^2 = (7 – (x+5))(7 + (x+5)) \]Step 3: Simplify each bracket. \[ (2-x)(12+x) \]Answer: b. (2-x)(12+x)

iii. \(a^2-2ab+b^2+a-b\) is equal to:

Step 1: Group the quadratic terms: \(a^2 – 2ab + b^2 + a – b = (a-b)^2 + (a-b)\)
Step 2: Factor out \((a-b)\) from the expression. \[ (a-b)((a-b)+1) = (a-b)(a-b+1) \]Answer: d. (a-b)(a-b+1)

iv. \(x^2+y^2-2xy-1\) is equal to:

Step 1: Rewrite \(x^2 + y^2 – 2xy – 1 = (x-y)^2 – 1\)
Step 2: Apply difference of squares formula: \(p^2 – q^2 = (p-q)(p+q)\) \[ (x-y)^2 – 1 = ((x-y)-1)((x-y)+1) \]Step 3: Simplify brackets. \[ (x-y-1)(x-y+1) \]Answer: d. (x – y + 1)(x – y – 1)

v. \(a^2+2a+1-b^2-x^2+2bx\) is equal to:

Step 1: Rearrange and group squares: \(a^2+2a+1 – (b^2 – 2bx + x^2) = (a+1)^2 – (b-x)^2\)
Step 2: Apply difference of squares formula. \[ (a+1 – (b-x))(a+1 + (b-x)) = (a+1 – b + x)(a+1 + b – x) \]Answer: b. (a + 1 + b – x)(a + 1 – b + x)


Q2: \((a+2b)^2 – a^2\)

Step 1: Recognise the pattern \(p^2 – q^2 = (p-q)(p+q)\) with \(p=a+2b,\; q=a\). \[ (a+2b)^2 – a^2 = \big((a+2b)-a\big)\big((a+2b)+a\big) \]Step 2: Simplify each factor. \[ \big((a+2b)-a\big) = 2b,\qquad \big((a+2b)+a\big) = 2a+2b = 2(a+b) \]Step 3: Multiply the simplified factors. \[ (2b)\cdot 2(a+b) = 4b(a+b) \]Answer: \(4b(a+b)\)


Q3: \((5a-3b)^2 – 16b^2\)

Step 1: Recognise the formula of difference of squares: \[ p^2 – q^2 = (p-q)(p+q) \] Here, \(p = (5a – 3b)\) and \(q = 4b\).
Step 2: Apply the formula. \[ (5a – 3b)^2 – (4b)^2 = \big((5a – 3b) – 4b\big)\big((5a – 3b) + 4b\big) \]Step 3: Simplify each factor. \[ (5a – 3b – 4b)(5a – 3b + 4b) = (5a – 7b)(5a + b) \]Answer: \((5a – 7b)(5a + b)\)


Q4: \(a^4 – (a^2 – 3b^2)^2\)

Step 1: Recognise the difference of squares pattern \(p^2 – q^2 = (p-q)(p+q)\). Here take \(p = a^2\) and \(q = (a^2 – 3b^2)\).
Step 2: Apply the formula. \[ a^4 – (a^2 – 3b^2)^2 = \big(a^2 – (a^2 – 3b^2)\big)\big(a^2 + (a^2 – 3b^2)\big) \]Step 3: Simplify each bracket. \[ a^2 – (a^2 – 3b^2) = 3b^2,\qquad a^2 + (a^2 – 3b^2) = 2a^2 – 3b^2 \]Step 4: Multiply the simplified factors (or factor out common numerical factor if desired). \[ a^4 – (a^2 – 3b^2)^2 = 3b^2(2a^2 – 3b^2) \]Answer: \(3b^2(2a^2 – 3b^2)\)


Q5: \((5a-2b)^2 – (2a-b)^2\)

Step 1: Identify the difference of two squares formula: \[ p^2 – q^2 = (p-q)(p+q) \] Here, \(p = (5a – 2b)\) and \(q = (2a – b)\).
Step 2: Apply the formula. \[ (5a-2b)^2 – (2a-b)^2 = \big((5a-2b) – (2a-b)\big)\big((5a-2b) + (2a-b)\big) \]Step 3: Simplify each bracket. \[ (5a – 2b – 2a + b) = 3a – b \] \[ (5a – 2b + 2a – b) = 7a – 3b \]Step 4: Write the factorised form. \[ (5a-2b)^2 – (2a-b)^2 = (3a – b)(7a – 3b) \]Answer: \((3a – b)(7a – 3b)\)


Q6: \(1 – 25(a+b)^2\)

Step 1: Recognise the difference of two squares identity: \[ p^2 – q^2 = (p-q)(p+q) \] Here, \(p = 1\) and \(q = 5(a+b)\), because \(25(a+b)^2 = \big(5(a+b)\big)^2\).
Step 2: Apply the formula. \[ 1 – 25(a+b)^2 = \big(1 – 5(a+b)\big)\big(1 + 5(a+b)\big) \]Step 3: Write the factors in simplified form. \[ = (1 – 5a – 5b)(1 + 5a + 5b) \]Answer: \((1 – 5a – 5b)(1 + 5a + 5b)\)


Q7: \(4(2a+b)^2 – (a-b)^2\)

Step 1: Recognise the difference of two squares identity: \[ p^2 – q^2 = (p-q)(p+q) \] Here, \(p = 2(2a+b) = (4a+2b)\) and \(q = (a-b)\).
Step 2: Apply the formula. \[ 4(2a+b)^2 – (a-b)^2 = \big((4a+2b) – (a-b)\big)\big((4a+2b) + (a-b)\big) \]Step 3: Simplify each bracket. \[ (4a+2b – a + b) = (3a+3b) \] \[ (4a+2b + a – b) = (5a+b) \]Step 4: Write the final factorised form. \[ = (3a+3b)(5a+b) = 3 (a + b)(5a + b) \]Answer: \(3 (a + b)(5a + b)\)


Q8: \(25(2x+y)^2 – 16(x-y)^2\)

Step 1: Recognise that this is a difference of two squares. \[ 25(2x+y)^2 – 16(x-y)^2 = \big(5(2x+y)\big)^2 – \big(4(x-y)\big)^2 \]Step 2: Apply the identity: \[ p^2 – q^2 = (p-q)(p+q) \] Here, \(p = 5(2x+y)\), \(q = 4(x-y)\).
Step 3: Write in factorised form. \[ = \big(5(2x+y) – 4(x-y)\big)\big(5(2x+y) + 4(x-y)\big) \]Step 4: Simplify each bracket.
First bracket: \[ 5(2x+y) – 4(x-y) = (10x+5y) – (4x-4y) = 6x+9y \] Second bracket: \[ 5(2x+y) + 4(x-y) = (10x+5y) + (4x-4y) = 14x+y \]Step 5: Final factorised form. \[ = (6x+9y)(14x+y) = 3(2x+3y)(14x+y) \]Answer: \(3(2x+3y)(14x+y)\)


Q9: \(\left(6\frac{2}{3}\right)^2 – \left(2\frac{1}{3}\right)^2\)

Step 1: Convert the mixed fractions into improper fractions. \[ 6\frac{2}{3} = \frac{20}{3}, \quad 2\frac{1}{3} = \frac{7}{3} \]So the given expression becomes: \[ \left(\frac{20}{3}\right)^2 – \left(\frac{7}{3}\right)^2 \]Step 2: Apply the identity of difference of squares: \[ p^2 – q^2 = (p-q)(p+q) \] Here, \(p = \frac{20}{3}, \, q = \frac{7}{3}\).
Step 3: Substitute values. \[ = \left(\frac{20}{3} – \frac{7}{3}\right)\left(\frac{20}{3} + \frac{7}{3}\right) \]Step 4: Simplify each bracket. \[ \frac{20}{3} – \frac{7}{3} = \frac{13}{3}, \quad \frac{20}{3} + \frac{7}{3} = \frac{27}{3} = 9 \]Step 5: Multiply the factors. \[ = \frac{13}{3} \times 9 = 39 \]Answer: \(39\)


Q10: \((0.7)^2 – (0.3)^2\)

Step 1: Recall the identity of difference of two squares: \[ p^2 – q^2 = (p-q)(p+q) \] Here, \(p = 0.7, \, q = 0.3\).
Step 2: Substitute the values. \[ (0.7)^2 – (0.3)^2 = (0.7 – 0.3)(0.7 + 0.3) \]Step 3: Simplify each bracket. \[ (0.7 – 0.3) = 0.4, \quad (0.7 + 0.3) = 1.0 \]Step 4: Multiply the factors. \[ 0.4 \times 1.0 = 0.4 \]Answer: \(0.4\)


Q11: \(75(x+y)^2 – 48(x-y)^2\)

Step 1: Take out the common factor of \(3\). \[ 75(x+y)^2 – 48(x-y)^2 = 3\big(25(x+y)^2 – 16(x-y)^2\big) \]Step 2: Recognize the difference of two squares. \[ 25(x+y)^2 – 16(x-y)^2 = \big(5(x+y)\big)^2 – \big(4(x-y)\big)^2 \]Step 3: Apply the identity: \[ p^2 – q^2 = (p-q)(p+q) \] Here, \(p = 5(x+y), \, q = 4(x-y)\).
Step 4: Substitute and expand. \[ = \big(5(x+y) – 4(x-y)\big)\big(5(x+y) + 4(x-y)\big) \]Step 5: Simplify each bracket. \[ 5(x+y) – 4(x-y) = 5x+5y -4x +4y = (x+9y) \\ 5(x+y) + 4(x-y) = 5x+5y +4x -4y = (9x+y) \]Step 6: Write the final factorisation with the common factor \(3\). \[ 75(x+y)^2 – 48(x-y)^2 = 3(x+9y)(9x+y) \]Answer:\(3(x+9y)(9x+y)\)


Q12: \(a^2 + 4a + 4 – b^2\)

Step 1: Observe that \(a^2 + 4a + 4\) is a perfect square trinomial. \[ a^2 + 4a + 4 = (a+2)^2 \]Step 2: Rewrite the expression using the square form. \[ a^2 + 4a + 4 – b^2 = (a+2)^2 – b^2 \]Step 3: Apply the identity of difference of squares: \[ p^2 – q^2 = (p-q)(p+q) \] Here, \(p = (a+2), \; q = b\).
Step 4: Substitute and simplify. \[ (a+2)^2 – b^2 = \big((a+2) – b\big)\big((a+2) + b\big) \\ = (a+2-b)(a+2+b) \]Answer:\((a+2-b)(a+2+b)\)


Q13: \(a^2 – b^2 – 2b – 1\)

Step 1: Group the terms involving \(b\). \[ a^2 – (b^2 + 2b + 1) \]Step 2: Recognize that \(b^2 + 2b + 1\) is a perfect square trinomial. \[ b^2 + 2b + 1 = (b+1)^2 \]Step 3: Rewrite the expression. \[ a^2 – (b+1)^2 \]Step 4: Apply the difference of squares identity: \[ p^2 – q^2 = (p-q)(p+q) \] Here, \(p = a, \; q = (b+1)\).
Step 5: Simplify. \[ a^2 – (b+1)^2 = (a-(b+1))(a+(b+1)) \\ = (a-b-1)(a+b+1) \]Answer:\((a-b-1)(a+b+1)\)


Q14: \(x^2 + 6x + 9 – 4y^2\)

Step 1: Group the terms properly. \[ (x^2 + 6x + 9) – 4y^2 \]Step 2: Recognize that \(x^2 + 6x + 9\) is a perfect square trinomial. \[ x^2 + 6x + 9 = (x+3)^2 \]Step 3: Rewrite the expression. \[ (x+3)^2 – (2y)^2 \]Step 4: Apply the difference of squares identity: \[ p^2 – q^2 = (p-q)(p+q) \] Here, \(p = (x+3), \; q = 2y\).
Step 5: Factorise. \[ (x+3)^2 – (2y)^2 = (x+3-2y)(x+3+2y) \]Answer:\((x+3-2y)(x+3+2y)\)



Share the Post:

Leave a Comment

Your email address will not be published. Required fields are marked *

Related Posts​

  • Area of Trapezium and a Polygon
    Step by Step solutions of Exercise: Test Yourself Concise Mathematics ICSE Class-8 Maths chapter 22- Area of Trapezium and a Polygon by Selina is provided.
  • Area of Trapezium and a Polygon
    Step by Step solutions of Exercise: 22-D Concise Mathematics ICSE Class-8 Maths chapter 22- Area of Trapezium and a Polygon by Selina is provided.

Join Our Newsletter

Name
Email
The form has been submitted successfully!
There has been some error while submitting the form. Please verify all form fields again.

Scroll to Top