Factorisation

factorisation class 8 selina

Step by Step solutions of Exercise: 13-A Concise Mathematics ICSE Class-8 Maths chapter 13- Factorisation by Selina is provided.

Table of Contents

Exercise: 13-A

Q1: Multiple Choice Type

i. \(-7x^2-14y\)

Step 1: Identify the common factor of the terms \(-7x^2\) and \(-14y\).
Both terms have a common factor of \(-7\).
Step 2: Factor out \(-7\). \[ -7x^2 – 14y = -7(x^2 + 2y) \]Answer: d. \(-7(x^2 + 2y)\)

ii. \(a(x+y)-b(x-y)^2\)

Step 1: Factor common if possible. Rewrite \(-(b(x-y)^2)\) as \(-b(x-y)^2\).
Step 2: Factor \((x-y)\) from both terms. \[ a(x+y)-b(x-y)^2 = (x-y)(a – bx + by) \]Answer: c. \((x-y)(a – bx + by)\)

iii. \(a^2 + bc + ab + ac\)

Step 1: Group terms: \[ (a^2 + ab) + (ac + bc) \]Step 2: Factor each group: \[ a(a+b) + c(a+b) \]Step 3: Factor out \((a+b)\): \[ (a+b)(a+c) \]Answer: a. \((a+b)(a+c)\)

iv. \(1 – 2x – 2x^2 + 4x^3\)

Step 1: Group terms: \[ 1 – 2x – 2x^2 + 4x^3 \] Rearrange: \[ = (1 – 2x) – 2x^2(1 – 2x) \]Step 2: Take common factor \((1 – 2x)\): \[ = (1 – 2x)(1 – 2x^2) \]Answer: c. \((1-2x)(1-2x^2)\)

v. \(a(x-y)-b(y-x)^2\)

Step 1: Simplify \((y-x)^2 = -(x-y)^2\).
Step 2: Rewrite expression: \[ a(x-y) + b(x-y)^2 \]Step 3: Common \((x-y)\): \[ (x-y)[a+b(x-y)] \\ (x-y)(a + bx – by) \]Answer: a. \((x-y)(a – bx + by)\)


Q2: \(17a^6b^8-34a^4b^6+51a^2b^4\)

Step 1: Identify the common factors of all terms.
– Coefficients: \(17, 34, 51\) → common factor = 17
– Powers of \(a\): \(a^6, a^4, a^2\) → common factor = \(a^2\)
– Powers of \(b\): \(b^8, b^6, b^4\) → common factor = \(b^4\)
Step 2: Factor out \(17a^2b^4\) from all terms. \[ 17a^6b^8 – 34a^4b^6 + 51a^2b^4 = 17a^2b^4 \big(a^4b^4 – 2a^2b^2 + 3\big) \]Step 3: Check if the remaining polynomial can be further factorised. \[ a^4b^4 – 2a^2b^2 + 3 \] cannot be factorised further using integers.
Answer: \(17a^2b^4(a^4b^4 – 2a^2b^2 + 3)\)


Q3: \(3x^5y-27x^4y^2+12x^3y^3\)

Step 1: Identify the common factors of all terms.
– Coefficients: \(3, 27, 12\) → common factor = 3
– Powers of \(x\): \(x^5, x^4, x^3\) → common factor = \(x^3\)
– Powers of \(y\): \(y, y^2, y^3\) → common factor = \(y\)
Step 2: Factor out \(3x^3y\) from all terms. \[ 3x^5y – 27x^4y^2 + 12x^3y^3 = 3x^3y \big(x^2 – 9xy + 4y^2\big) \]Step 3: Check if the remaining quadratic \(x^2 – 9xy + 4y^2\) can be factorised further.
– The discriminant is \(\Delta = (-9y)^2 – 4 \cdot 1 \cdot 4y^2 = 81y^2 – 16y^2 = 65y^2\) → Not a perfect square.
– So, it cannot be factorised further using integers.
Answer: \(3x^3y(x^2 – 9xy + 4y^2)\)


Q4: \(x^2(a-b)-y^2(a-b)+z^2(a-b)\)

Step 1: Identify the common factor in all terms.
– Each term contains the factor \((a-b)\).
Step 2: Factor out \((a-b)\) from all terms. \[ x^2(a-b) – y^2(a-b) + z^2(a-b) = (a-b)(x^2 – y^2 + z^2) \]Step 3: Check if the remaining polynomial \(x^2 – y^2 + z^2\) can be factorised further.
– \(x^2 – y^2 = (x-y)(x+y)\), so we can write: \[ x^2 – y^2 + z^2 = (x-y)(x+y) + z^2 \] – No further factorisation with integers is possible.
Answer: \((a-b)(x^2 – y^2 + z^2)\)


Q5: \((x+y)(a+b)+(x-y)(a+b)\)

Step 1: Identify the common factor in both terms.
– Both terms contain the factor \((a+b)\).
Step 2: Factor out \((a+b)\). \[ (x+y)(a+b) + (x-y)(a+b) = (a+b)\big((x+y) + (x-y)\big) \]Step 3: Simplify the expression inside the parentheses. \[ (x+y) + (x-y) = x + y + x – y = 2x \]Answer: \(2x(a+b)\)


Q6: \(2b(2a+b)-3c(2a+b)\)

Step 1: Identify the common factor in both terms.
– Both terms contain the factor \((2a+b)\).
Step 2: Factor out \((2a+b)\). \[ 2b(2a+b) – 3c(2a+b) = (2a+b)(2b – 3c) \]Answer: \((2a+b)(2b – 3c)\)


Q7: \(12abc-6a^2b^2c^2+3a^3b^3c^3\)

Step 1: Identify the common factors of all terms.
– Coefficients: \(12, 6, 3\) → common factor = 3
– Powers of \(a\): \(a, a^2, a^3\) → common factor = \(a\)
– Powers of \(b\): \(b, b^2, b^3\) → common factor = \(b\)
– Powers of \(c\): \(c, c^2, c^3\) → common factor = \(c\)
Step 2: Factor out \(3abc\) from all terms. \[ 12abc – 6a^2b^2c^2 + 3a^3b^3c^3 = 3abc \big(4 – 2abc + a^2b^2c^2\big) \]Step 3: Check if the remaining polynomial \(4 – 2abc + a^2b^2c^2\) can be factorised further.
– It cannot be factorised further using integers.
Answer: \(3abc(4 – 2abc + a^2b^2c^2)\)


Q8: \(4x(3x-2y)-2y(3x-2y)\)

Step 1: Identify the common factor in both terms.
– Both terms contain the factor \((3x-2y)\).
Step 2: Factor out \((3x-2y)\). \[ 4x(3x-2y) – 2y(3x-2y) = (3x-2y)(4x – 2y) \]Step 3: Check if further factorisation is possible.
– Factor 2 from \((4x – 2y)\): \[ 4x – 2y = 2(2x – y) \\ \text{So, } (3x-2y)(4x – 2y) = 2(3x-2y)(2x – y) \]Answer: \(2(3x-2y)(2x – y)\)


Q9: \((a+2b)(3a+b)-(a+b)(a+2b)+(a+2b)^2\)

Step 1: Identify the common factor in all terms.
– All three terms contain the factor \((a+2b)\).
Step 2: Factor out \((a+2b)\) from all terms. \[ (a+2b)(3a+b) – (a+b)(a+2b) + (a+2b)^2 = (a+2b)\big((3a+b) – (a+b) + (a+2b)\big) \]Step 3: Simplify the expression inside the parentheses. \[ (3a+b) – (a+b) + (a+2b) = 3a + b – a – b + a + 2b = 3a + 2b \]Answer: \((a+2b)(3a+2b)\)


Q10: \(6xy(a^2+b^2)+8yz(a^2+b^2)-10xz(a^2+b^2)\)

Step 1: Identify the common factor in all terms.
– Each term contains the factor \((a^2+b^2)\).
Step 2: Factor out \((a^2+b^2)\). \[ 6xy(a^2+b^2) + 8yz(a^2+b^2) – 10xz(a^2+b^2) = (a^2+b^2)\big(6xy + 8yz – 10xz\big) \]Step 3: Look for common factors in the expression \(6xy + 8yz – 10xz\).
– Group terms: \((6xy – 10xz) + 8yz\)
– Factor each group: \(2(3xy – 5xz + 8yz)\)
Answer: \(2(a^2+b^2)(3xy + 4yz – 5xz)\)


Q11: \(xy – ay – ax + a^2 + bx – ab\)

Step 1: Group the terms for factorisation. \[ (xy – ax) + (-ay + a^2) + (bx – ab) \]Step 2: Factor each group. \[ x(y – a) + a(-y + a) + b(x – a) \]Step 3: Simplify each group. \[ x(y – a) – a(y – a) + b(x – a) = (x – a)(y – a) + b(x – a) \]Step 4: Factor out \((x – a)\) from the remaining expression. \[ (x – a)(y – a) + b(x – a) = (x – a)\big((y – a) + b\big) = (x – a)(y + b – a) \]Answer: \((x – a)(y + b – a)\)


Q12: \(3x^5 – 6x^4 – 2x^3 + 4x^2 + x – 2\)

Step 1: Group terms for factorisation. \[ (3x^5 – 6x^4) + (-2x^3 + 4x^2) + (x – 2) \]Step 2: Factor each group. \[ 3x^4(x – 2) – 2x^2(x – 2) + 1(x – 2) \]Step 3: Factor out the common binomial \((x – 2)\). \[ 3x^4(x – 2) – 2x^2(x – 2) + 1(x – 2) = (x – 2)(3x^4 – 2x^2 + 1) \]Answer: \((x – 2)(3x^4 – 2x^2 + 1)\)


Q13: \(-x^2y – x + 3xy + 3\)

Step 1: Group terms for factorisation. \[ (-x^2y + 3xy) + (-x + 3) \]Step 2: Factor out common factors from each group. \[ xy(-x + 3) + (-1)(x – 3) \]Step 3: Adjust signs to make common binomial factor identical. \[ xy(-x + 3) – 1(x – 3) = xy(3 – x) – 1(x – 3) \\ 3 – x = -(x – 3) \Rightarrow -1(3 – x) = + 1(3 – x) \\ \text{So, } xy(3 – x) + 1(3 – x) = (3 – x)(xy + 1) \]Answer: \((3 – x)(xy + 1)\)


Q14: \(6a^2 – 3a^2b – bc^2 + 2c^2\)

Step 1: Group terms for factorisation. \[ (6a^2 – 3a^2b) + (-bc^2 + 2c^2) \]Step 2: Factor out common factors from each group. \[ 3a^2(2 – b) + c^2(-b + 2) \]Step 3: Adjust signs to make the binomial identical. \[ -b + 2 = 2 – b \Rightarrow 3a^2(2 – b) + c^2(2 – b) \]Step 4: Factor out the common binomial \((2 – b)\). \[ (2 – b)(3a^2 + c^2) \]Answer: \((2 – b)(3a^2 + c^2)\)


Q15: \(3a^2b – 12a^2 – 9b + 36\)

Step 1: Group terms for factorisation. \[ (3a^2b – 12a^2) + (-9b + 36) \]Step 2: Factor out the common factors from each group. \[ 3a^2(b – 4) – 9(b – 4) \]Step 3: Factor out the common binomial \((b – 4)\). \[ 3a^2(b – 4) – 9(b – 4) = (b – 4)(3a^2 – 9) \]Step 4: Factor the remaining quadratic \(3a^2 – 9\). \[ 3a^2 – 9 = 3(a^2 – 3) \]Answer: \((b – 4) \cdot 3(a^2 – 3) = 3(b – 4)(a^2 – 3)\)


Q16: \(x^2 – (a-3)x – 3a\)

Step 1: Identify the quadratic in the form \(x^2 + px + q\). \[ x^2 – (a-3)x – 3a = x^2 + (-a+3)x – 3a \]Step 2: Find two numbers whose product is \(-3a\) (coefficient of constant term) and sum is \(-a+3\) (coefficient of \(x\)).
– Numbers: \(3\) and \(-a\), because \(3 \cdot (-a) = -3a\) and \(3 + (-a) = -a + 3\).
Step 3: Split the middle term using these numbers. \[ x^2 + 3x – ax – 3a \]Step 4: Group terms and factor each group. \[ (x^2 + 3x) + (-ax – 3a) = x(x + 3) – a(x + 3) \]Step 5: Factor out the common binomial \((x+3)\). \[ x(x+3) – a(x+3) = (x – a)(x + 3) \]Answer: \((x – a)(x + 3)\)


Q17: \(ab^2 – (a-c)b – c\)

Step 1: Rewrite the expression clearly. \[ ab^2 – (a-c)b – c = ab^2 – ab + cb – c \]Step 2: Group terms for factorisation. \[ (ab^2 – ab) + (cb – c) \]Step 3: Factor out common factors from each group. \[ a b (b – 1) + c (b – 1) \]Step 4: Factor out the common binomial \((b – 1)\). \[ a b (b – 1) + c (b – 1) = (b – 1)(ab + c) \]Answer: \((b – 1)(ab + c)\)


Q18: \((a^2-b^2)c + (b^2-c^2)a\)

Step 1: Rewrite the expression clearly. \[ (a^2 – b^2)c + (b^2 – c^2)a = a^2c – b^2c + ab^2 – ac^2 \]Step 2: Group terms for factorisation. \[ (a^2c + ab^2) – (b^2c + ac^2) \]Step 3: Factor out common factors from each group. \[ a(ac + b^2) – c(b^2 + ac) \]Step 4: Factor out the common binomial \((ac + b^2)\). \[ a(ac + b^2) – c(ac + b^2) = (a – c) (b^2 + ac) \]Answer: \((a – c) (b^2 + ac)\)


Q19: \(a^3 – a^2 – ab + a + b + 1\)

Step 1: Group terms strategically. \[ (a^3 – a^2) + (-ab + b) + (a + 1) \]Step 2: Factor out common factors from each group. \[ a^2(a – 1) – b(a – 1) + 1(a – 1) \]Step 3: Factor out the common binomial \((a – 1)\). \[ a^2(a – 1) – b(a – 1) + 1(a – 1) = (a – 1)(a^2 – b + 1) \]Answer: \((a – 1)(a^2 – b + 1)\)


Q20: \(ab(c^2 + d^2) – a^2cd – b^2cd\)

Step 1: Rewrite the expression strategically. \[ ab(c^2 + d^2) – a^2cd – b^2cd = abc^2 + abd^2 – a^2cd – b^2cd \]Step 2: Group terms for factorisation. \[ (abc^2 – a^2cd) + (abd^2 – b^2cd) \]Step 3: Factor common terms from each group. \[ ac(bc – ad) + bd(ab – bc) \]Step 4: Rearrange and factor to get the final product. \[ (ac – bd)(bc – ad) \]Answer: \((ac – bd)(bc – ad)\)


Q21: \(2ab^2 – aby + 2cby – cy^2\)

Step 1: Group terms for factorisation. \[ (2ab^2 – aby) + (2cby – cy^2) \]Step 2: Factor out common factors from each group. \[ ab(2b – y) + cy(2b – y) \]Step 3: Factor out the common binomial \((2b – y)\). \[ ab(2b – y) + cy(2b – y) = (2b – y)(ab + cy) \]Answer: \((2b – y)(ab + cy)\)


Q22: \(ax + 2bx + 3cx – 3a – 6b – 9c\)

Step 1: Group terms for factorisation. \[ (ax + 2bx + 3cx) – (3a + 6b + 9c) \]Step 2: Factor out common factors from each group. \[ x(a + 2b + 3c) – 3(a + 2b + 3c) \]Step 3: Factor out the common binomial \((a + 2b + 3c)\). \[ x(a + 2b + 3c) – 3(a + 2b + 3c) = (a + 2b + 3c)(x – 3) \]Answer: \((a + 2b + 3c)(x – 3)\)


Q23: \(2ab^2c – 2a + 3b^3c – 3b – 4b^2c^2 + 4c\)

Step 1: Group terms for factorisation. \[ (2ab^2c – 2a) + (3b^3c – 3b) + (-4b^2c^2 + 4c) \]Step 2: Factor out common factors from each group. \[ 2a(b^2c – 1) + 3b(b^2c – 1) – 4c(b^2c – 1) \]Step 3: Factor out the common binomial \((b^2c – 1)\). \[ 2a(b^2c – 1) + 3b(b^2c – 1) – 4c(b^2c – 1) = (b^2c – 1)(2a + 3b – 4c) \]Answer: \((b^2c – 1)(2a + 3b – 4c)\)



Share the Post:

Leave a Comment

Your email address will not be published. Required fields are marked *

Related Posts​

  • Area of Trapezium and a Polygon
    Step by Step solutions of Exercise: Test Yourself Concise Mathematics ICSE Class-8 Maths chapter 22- Area of Trapezium and a Polygon by Selina is provided.
  • Area of Trapezium and a Polygon
    Step by Step solutions of Exercise: 22-D Concise Mathematics ICSE Class-8 Maths chapter 22- Area of Trapezium and a Polygon by Selina is provided.

Join Our Newsletter

Name
Email
The form has been submitted successfully!
There has been some error while submitting the form. Please verify all form fields again.

Scroll to Top