Identities

identities class 8 selina

Step by Step solutions of Test Yourself Concise Mathematics ICSE Class-8 Maths chapter 12- Identities by Selina is provided.

Test Yourself

Q1: Multiple Choice Type:

i. If a is positive and \(a^2+\frac{1}{a^2}=18\); then the value of \(a-\frac{1}{a}\) is:

Step 1: Recall identity: \((a – \frac{1}{a})^2 = a^2 + \frac{1}{a^2} – 2\)
Step 2: Substitute given value:
\((a – \frac{1}{a})^2 = 18 – 2 = 16\)
Step 3: Solve for \(a – \frac{1}{a}\):
\(a – \frac{1}{a} = \sqrt{16} = 4\)
Answer: a. 4

ii. \(\left(x+y\right)\left(x-y\right)\left(x^2+y^2\right)\left(x^4+y^4\right)\) is equal to:

Step 1: Recall identities: \((x+y)(x-y) = x^2 – y^2\)
Step 2: Substitute:
\((x+y)(x-y)(x^2+y^2)(x^4+y^4) = (x^2 – y^2)(x^2 + y^2)(x^4 + y^4)\)
Step 3: Use \((x^2 – y^2)(x^2 + y^2) = x^4 – y^4\)
Then: \((x^4 – y^4)(x^4 + y^4) = x^8 – y^8\)
Answer: c. \(x^8 – y^8\)

iii. The value of \(102\times98\) is:

Step 1: Use identity: \((a+b)(a-b) = a^2 – b^2\)
Step 2: Let \(a = 100, b = 2\), then:
\(102 \times 98 = (100+2)(100-2) = 100^2 – 2^2\)
Step 3: Simplify:
\(102 \times 98 = 10000 – 4 = 9996\)
Answer: d. 9996

iv. \(\left(x+3\right)\left(x+3\right)-\left(x-2\right)\left(x-2\right)\) is equal to:

Step 1: Expand using \((a+b)^2 = a^2 + 2ab + b^2\)
\((x+3)^2 – (x-2)^2 = (x^2 + 6x + 9) – (x^2 – 4x + 4)\)
Step 2: Simplify:
\(x^2 + 6x + 9 – x^2 + 4x – 4 = 10x + 5\)
Answer: a. 10x + 5

v. If \(5a={30}^2-{25}^2\), the value of a is:

Step 1: Use \((a+b)(a-b) = a^2 – b^2\)
\(30^2 – 25^2 = (30+25)(30-25) = 55 \times 5 = 275\)
Step 2: Solve for a:
\(5a = 275 \Rightarrow a = \frac{275}{5} = 55\)
Answer: c. 55

vi. Statement 1: Cube of a binomial : \(\left(a-b\right)^3=a^3+3a^2b-3ab^2-b^3\)
Statement 2: \(\left(a-b\right)^2-\left(a+b\right)^2=4ab\).
Which of the following options is correct?

Step 1: Verify Statement 1:
\((a-b)^3 = a^3 – 3a^2b + 3ab^2 – b^3\) ❌ incorrect
Step 2: Verify Statement 2:
\((a-b)^2 – (a+b)^2 = (a^2 – 2ab + b^2) – (a^2 + 2ab + b^2) = -4ab\) ❌ incorrect
Answer: b. Both the statements are false.

vii. Assertion (A): Using appropriate identity, we get \(22.5\times21.5=484.75\)
Reason (R): The product : \(\left(x+y\right)\left(x-y\right)=x^2-y^2\)

Step 1: Let \(x = 22, y = 0.5\)
\((22.5 \times 21.5) = (22 + 0.5)(22 – 0.5) = 22^2 – 0.5^2 = 484 – 0.25 = 483.75\) ❌
Step 2: Correct identity usage: \((x+y)(x-y) = x^2 – y^2\)
\((22.5 + 21.5)/2 = 22\), but calculation shows \(22.5 \times 21.5 = 484.75\) ✅
Answer:d. A is false, but R is true.

viii. Assertion (A): If we add 9 with \(49x^2-42x\), the resultant expression will be a perfect square expression.
Reason (R): The product of the sum and difference of the same two terms = Difference of their squares.

Step 1: \(49x^2 – 42x + 9 = (7x – 3)^2\) ✅
Step 2: Reason statement refers to \((a+b)(a-b)=a^2-b^2\) ✅
Step 3: So, reason (R) is true but reason (R) is not the correct explanation of assertion (A).
Answer:b. Both A and R are correct, and R is not correct explanation for A.

ix. Assertion (A): If the volume of a cube is \(a^3+b^3+3ab(a+b)\), then the edge of the cube is \(a+b\)
Reason (R): \((\text{1st term} + \text{2nd term})^3 = (\text{1st term})^3 + 3(\text{1st term})^2(\text{2nd term}) + 3(\text{2nd term})^2(\text{1st term}) + (\text{2nd term})^3\)

Step 1: Identity: \((a+b)^3 = a^3 + b^3 + 3ab(a+b)\) ✅
Step 2: Hence edge = \(a+b\) ✅
Answer:a. Both A and R are correct, and R is the correct explanation for A

x. Assertion (A): \(687 \times 687 – 313 \times 313 = 37400\)
Reason (R): The product of the sum and the difference of the same two terms = The square of their difference

Step 1: Identity: \((a+b)(a-b) = a^2 – b^2\) ✅
Step 2: Here, \(687 \times 687 – 313 \times 313 = (687+313)(687-313) = 1000 \times 374 = 374000\), not 37400 ❌
Answer:d. A is false, but R is true


Q2: Evaluate:

i. \((3x+\frac{1}{2})(2x+\frac{1}{3})\)

Step 1: Use distributive property: \((a+b)(c+d) = ac + ad + bc + bd\)
\((3x)(2x) + (3x)(\frac{1}{3}) + (\frac{1}{2})(2x) + (\frac{1}{2})(\frac{1}{3})\)
Step 2: Compute each term:
\(6x^2 + x + x + \frac{1}{6} = 6x^2 + 2x + \frac{1}{6}\)
Answer:\(6x^2 + 2x + \frac{1}{6}\)

ii. \((2a+0.5)(7a-0.3)\)

Step 1: Expand using distributive property:
\((2a)(7a) + (2a)(-0.3) + (0.5)(7a) + (0.5)(-0.3)\)
Step 2: Compute:
\(14a^2 – 0.6a + 3.5a – 0.15 = 14a^2 + 2.9a – 0.15\)
Answer:\(14a^2 + 2.9a – 0.15\)

iii. \((9-y)(7+y)\)

Step 1: Use \((a-b)(c+d) = ac + ad – bc – bd\)
\((9)(7) + (9)(y) – (y)(7) – (y)(y) = 63 + 9y – 7y – y^2\)
Step 2: Simplify:
\(63 + 2y – y^2 = -y^2 + 2y + 63\)
Answer:\(-y^2 + 2y + 63\)

iv. \((2-z)(15-z)\)

Step 1: Expand:
\(2 \cdot 15 – 2z – 15z + z^2 = 30 – 17z + z^2\)
Answer:\(z^2 – 17z + 30\)

v. \((a^2+5)(a^2-3)\)

Step 1: Use identity \((x+y)(x-y) = x^2 – y^2\) if applicable. Here \(a^2+5\) and \(a^2-3\) are not in same form, so expand directly:
\((a^2)(a^2) + (a^2)(-3) + 5(a^2) + 5(-3) = a^4 – 3a^2 + 5a^2 – 15\)
Step 2: Simplify:
\(a^4 + 2a^2 – 15\)
Answer:\(a^4 + 2a^2 – 15\)

vi. \((4-ab)(8+ab)\)

Step 1: Use identity \((x-y)(x+y) = x^2 – y^2\) with \(x=4, y=ab-4\)?
Actually expand directly:
\((4)(8) + (4)(ab) – (ab)(8) – (ab)(ab) = 32 + 4ab – 8ab – a^2b^2\)
Step 2: Simplify:
\(32 – 4ab – a^2b^2\)
Answer:\(32 – 4ab – a^2 b^2\)

vii. \((5xy-7)(7xy+9)\)

Step 1: Expand using distributive property:
\((5xy)(7xy) + (5xy)(9) + (-7)(7xy) + (-7)(9)\)
Step 2: Compute each term:
\(35x^2y^2 + 45xy – 49xy – 63\)
Step 3: Simplify:
\(35x^2y^2 – 4xy – 63\)
Answer:\(35x^2 y^2 – 4xy – 63\)

viii. \((3a^2-4b^2)(8a^2-3b^2)\)

Step 1: Expand using distributive property:
\((3a^2)(8a^2) + (3a^2)(-3b^2) + (-4b^2)(8a^2) + (-4b^2)(-3b^2)\)
Step 2: Compute each term:
\(24a^4 – 9a^2b^2 – 32a^2b^2 + 12b^4\)
Step 3: Simplify:
\(24a^4 – 41a^2b^2 + 12b^4\)
Answer:\(24a^4 – 41a^2 b^2 + 12b^4\)


Q3: Find the square of:

i. \((3x + \frac{2}{y})^2\)

Step 1: Use identity \((a+b)^2 = a^2 + 2ab + b^2\)
Step 2: Substitute \(a = 3x, b = \frac{2}{y}\)
\((3x)^2 + 2(3x)(\frac{2}{y}) + (\frac{2}{y})^2\)
Step 3: Compute each term:
\(9x^2 + \frac{12x}{y} + \frac{4}{y^2}\)
Answer:\(9x^2 + \frac{12x}{y} + \frac{4}{y^2}\)

ii. \((\frac{5a}{6b} – \frac{6b}{5a})^2\)

Step 1: Use identity \((a-b)^2 = a^2 – 2ab + b^2\)
Step 2: Substitute \(a = \frac{5a}{6b}, b = \frac{6b}{5a}\)
\((\frac{5a}{6b})^2 – 2(\frac{5a}{6b})(\frac{6b}{5a}) + (\frac{6b}{5a})^2\)
Step 3: Compute each term:
\(\frac{25a^2}{36b^2} – 2(1) + \frac{36b^2}{25a^2} = \frac{25a^2}{36b^2} + \frac{36b^2}{25a^2} – 2\)
Answer:\(\frac{25a^2}{36b^2} + \frac{36b^2}{25a^2} – 2\)

iii. \((2m^2 – \frac{2}{3}n^2)^2\)

Step 1: \((a-b)^2 = a^2 – 2ab + b^2\)
Step 2: \(a = 2m^2, b = \frac{2}{3}n^2\)
\((2m^2)^2 – 2(2m^2)(\frac{2}{3}n^2) + (\frac{2}{3}n^2)^2\)
Step 3: Compute:
\(4m^4 – \frac{8}{3}m^2n^2 + \frac{4}{9}n^4\)
Answer:\(4m^4 – \frac{8}{3} m^2n^2 + \frac{4}{9} n^4\)

iv. \((5x + \frac{1}{5x})^2\)

Step 1: \((a+b)^2 = a^2 + 2ab + b^2\)
Step 2: \(a=5x, b=\frac{1}{5x}\)
\((5x)^2 + 2(5x)(\frac{1}{5x}) + (\frac{1}{5x})^2 = 25x^2 + 2 + \frac{1}{25x^2}\)
Answer:\(25x^2 + 2 + \frac{1}{25x^2}\)

v. \((8x + \frac{3}{2}y)^2\)

Step 1: \((a+b)^2 = a^2 + 2ab + b^2\)
\((8x)^2 + 2(8x)(\frac{3}{2}y) + (\frac{3}{2}y)^2 = 64x^2 + 24xy + \frac{9}{4}y^2\)
Answer:\(64x^2 + 24xy + \frac{9}{4} y^2\)

vi. \(607^2\)

Step 1: Use \((x+y)^2 = x^2 + 2xy + y^2\), take \(x=600, y=7\)
\((600+7)^2 = 600^2 + 2(600)(7) + 7^2 = 360000 + 8400 + 49 = 368449\)
Answer:368449

vii. \(391^2\)

Step 1: \(x=400, y=9, 391 = 400-9\), use \((x-y)^2 = x^2 – 2xy + y^2\)
\(400^2 – 2(400)(9) + 9^2 = 160000 – 7200 + 81 = 152881\)
Answer:152881

viii. \(9.7^2\)

Step 1: \(x=10, y=0.3, 9.7 = 10-0.3\)
\((10-0.3)^2 = 10^2 – 2(10)(0.3) + 0.3^2 = 100 – 6 + 0.09 = 94.09\)
Answer:94.09


Q4: If \(a+\frac{1}{a}=2\), find:

i. \(a^2+\frac{1}{a^2}\)

Step 1: Use identity: \((a+\frac{1}{a})^2 = a^2 + 2 + \frac{1}{a^2}\)
Step 2: Substitute \(a+\frac{1}{a} = 2\)
\((2)^2 = a^2 + 2 + \frac{1}{a^2}\)
Step 3: Simplify:
\(4 = a^2 + \frac{1}{a^2} + 2\)
\(a^2 + \frac{1}{a^2} = 4 – 2 = 2\)
Answer:2

ii. \(a^4+\frac{1}{a^4}\)

Step 1: Use identity: \((a^2+\frac{1}{a^2})^2 = a^4 + 2 + \frac{1}{a^4}\)
Step 2: Substitute \(a^2+\frac{1}{a^2} = 2\)
\((2)^2 = a^4 + 2 + \frac{1}{a^4}\)
Step 3: Simplify:
\(4 = a^4 + \frac{1}{a^4} + 2\)
\(a^4 + \frac{1}{a^4} = 4 – 2 = 2\)
Answer:2


Q5: If \(m-\frac{1}{m}=5\), find:

i. \(m^2+\frac{1}{m^2}\)

Step 1: Use identity: \((m-\frac{1}{m})^2 = m^2 – 2 + \frac{1}{m^2}\)
Step 2: Substitute \(m-\frac{1}{m} = 5\)
\((5)^2 = m^2 – 2 + \frac{1}{m^2}\)
Step 3: Simplify:
\(25 = m^2 + \frac{1}{m^2} – 2\)
\(m^2 + \frac{1}{m^2} = 25 + 2 = 27\)
Answer:27

ii. \(m^4+\frac{1}{m^4}\)

Step 1: Use identity: \((m^2+\frac{1}{m^2})^2 = m^4 + 2 + \frac{1}{m^4}\)
Step 2: Substitute \(m^2+\frac{1}{m^2} = 27\)
\((27)^2 = m^4 + 2 + \frac{1}{m^4}\)
Step 3: Simplify:
\(729 = m^4 + \frac{1}{m^4} + 2\)
\(m^4 + \frac{1}{m^4} = 729 – 2 = 727\)
Answer:727

iii. \(m^2-\frac{1}{m^2}\)

Step 1: Use identity: \((m-\frac{1}{m})^2 = m^2 – 2 + \frac{1}{m^2}\)
Step 2: \((m-\frac{1}{m})^2 + 4 = m^2 – \frac{1}{m^2})^2\) (identity: \(m^2 – \frac{1}{m^2} = (m-\frac{1}{m}) \cdot (m+\frac{1}{m})\))
Step 3: First, find \(m+\frac{1}{m} = \sqrt{(m-\frac{1}{m})^2 + 4} = \sqrt{25+4} = \sqrt{29}\)
Step 4: Then \(m^2 – \frac{1}{m^2} = (m-\frac{1}{m})(m+\frac{1}{m}) = 5 \cdot \sqrt{29} = 5\sqrt{29}\)
Answer:5√29


Q6: If \(a^2+b^2=41\) and \(ab=4\), find:

i. \(a-b\)

Step 1: Use identity: \((a-b)^2 = a^2 – 2ab + b^2)\)
Step 2: Substitute the given values:
\((a-b)^2 = 41 – 2(4) = 41 – 8 = 33\)
Step 3: Take the square root:
\(a-b = \sqrt{33}\)
Answer:\(\sqrt{33}\)

ii. \(a+b\)

Step 1: Use identity: \((a+b)^2 = a^2 + 2ab + b^2)\)
Step 2: Substitute the given values:
\((a+b)^2 = 41 + 2(4) = 41 + 8 = 49\)
Step 3: Take the square root:
\(a+b = \sqrt{49} = 7\)
Answer:7


Q7: If \(2a+\frac{1}{2a}=8\), find:

i. \(4a^2+\frac{1}{4a^2}\)

Step 1: Use the identity: \((x+\frac{1}{x})^2 = x^2 + 2 + \frac{1}{x^2}\)
Step 2: Here \(x = 2a\), so \(2a+\frac{1}{2a} = 8\)
\((2a+\frac{1}{2a})^2 = (2a)^2 + 2 + \frac{1}{(2a)^2}\)
Step 3: Substitute the value 8:
\(8^2 = 4a^2 + 2 + \frac{1}{4a^2}\)
\(64 = 4a^2 + \frac{1}{4a^2} + 2\)
\(4a^2 + \frac{1}{4a^2} = 64 – 2 = 62\)
Answer:62

ii. \(16a^4+\frac{1}{16a^4}\)

Step 1: Use the identity: \((x^2+\frac{1}{x^2})^2 = x^4 + 2 + \frac{1}{x^4}\)
Step 2: Substitute \(x^2+\frac{1}{x^2} = 4a^2+\frac{1}{4a^2} = 62\)
\((4a^2+\frac{1}{4a^2})^2 = (16a^4 + \frac{1}{16a^4}) + 2\)
\(62^2 = 16a^4 + \frac{1}{16a^4} + 2\)
Step 3: Simplify:
\(3844 = 16a^4 + \frac{1}{16a^4} + 2\)
\(16a^4 + \frac{1}{16a^4} = 3844 – 2 = 3842\)
Answer:3842


Q8: If \(3x-\frac{1}{3x}=5\), find:

i. \(9x^2+\frac{1}{9x^2}\)

Step 1: Use the identity: \((x-\frac{1}{x})^2 = x^2 – 2 + \frac{1}{x^2}\)
Step 2: Here \(x = 3x\), so \(3x-\frac{1}{3x} = 5\)
\((3x-\frac{1}{3x})^2 = (3x)^2 + \frac{1}{(3x)^2} – 2\)
Step 3: Substitute the value 5:
\(5^2 = 9x^2 + \frac{1}{9x^2} – 2\)
\(25 = 9x^2 + \frac{1}{9x^2} – 2\)
\(9x^2 + \frac{1}{9x^2} = 25 + 2 = 27\)
Answer:27

ii. \(81x^4+\frac{1}{81x^4}\)

Step 1: Use the identity: \((x^2+\frac{1}{x^2})^2 = x^4 + \frac{1}{x^4} + 2\)
Step 2: Substitute \(x^2+\frac{1}{x^2} = 9x^2+\frac{1}{9x^2} = 27\)
\((9x^2+\frac{1}{9x^2})^2 = 81x^4+\frac{1}{81x^4} + 2\)
\(27^2 = 81x^4+\frac{1}{81x^4} + 2\)
\(729 = 81x^4+\frac{1}{81x^4} + 2\)
\(81x^4+\frac{1}{81x^4} = 729 – 2 = 727\)
Answer:727


Q9: Expand:

i. \((3x-4y+5z)^2\)

Step 1: Use the identity: \((p+q+r)^2 = p^2 + q^2 + r^2 + 2pq + 2pr + 2qr\)
Step 2: Here \(p=3x, q=-4y, r=5z\)
\((3x-4y+5z)^2 = (3x)^2 + (-4y)^2 + (5z)^2 + 2(3x)(-4y) + 2(3x)(5z) + 2(-4y)(5z)\)
Step 3: Simplify each term:
\(= 9x^2 + 16y^2 + 25z^2 – 24xy + 30xz – 40yz\)
Answer:\(9x^2 + 16y^2 + 25z^2 – 24xy + 30xz – 40yz\)

ii. \((2a-5b-4c)^2\)

Step 1: \((p+q+r)^2 = p^2 + q^2 + r^2 + 2pq + 2pr + 2qr\)
Step 2: \(p=2a, q=-5b, r=-4c\)
\((2a-5b-4c)^2 = (2a)^2 + (-5b)^2 + (-4c)^2 + 2(2a)(-5b) + 2(2a)(-4c) + 2(-5b)(-4c)\)
Step 3: Simplify:
\(= 4a^2 + 25b^2 + 16c^2 – 20ab – 16ac + 40bc\)
Answer:\(4a^2 + 25b^2 + 16c^2 – 20ab – 16ac + 40bc\)

iii. \((5x+3y)^3\)

Step 1: Use the identity: \((p+q)^3 = p^3 + 3p^2q + 3pq^2 + q^3\)
Step 2: \(p=5x, q=3y\)
\((5x+3y)^3 = (5x)^3 + 3(5x)^2(3y) + 3(5x)(3y)^2 + (3y)^3\)
Step 3: Simplify:
\(= 125x^3 + 225x^2y + 135xy^2 + 27y^3\)
Answer:\(125x^3 + 225x^2y + 135xy^2 + 27y^3\)

iv. \((6a-7b)^3\)

Step 1: Use the identity: \((p-q)^3 = p^3 – 3p^2q + 3pq^2 – q^3\)
Step 2: \(p=6a, q=7b\)
\((6a-7b)^3 = (6a)^3 – 3(6a)^2(7b) + 3(6a)(7b)^2 – (7b)^3\)
Step 3: Simplify:
\(= 216a^3 – 756a^2b + 882ab^2 – 343b^3\)
Answer:\(216a^3 – 756a^2b + 882ab^2 – 343b^3\)


Q10: If \(a+b+c=9\) and \(ab+bc+ca=15\), find: \(a^2+b^2+c^2\).

Step 1: Use the identity: \((a+b+c)^2 = a^2 + b^2 + c^2 + 2(ab + bc + ca)\)
Step 2: Substitute the given values: \((9)^2 = a^2 + b^2 + c^2 + 2(15)\)
Step 3: Simplify: \(81 = a^2 + b^2 + c^2 + 30\)
Step 4: Solve for \(a^2 + b^2 + c^2\): \(a^2 + b^2 + c^2 = 81 – 30\)
Answer:51


Q11: If \(a+b+c=11\) and \(a^2+b^2+c^2=81\), find: \(ab+bc+ca\).

Step 1: Use the identity: \((a+b+c)^2 = a^2 + b^2 + c^2 + 2(ab + bc + ca)\)
Step 2: Substitute the given values:
\((11)^2 = 81 + 2(ab + bc + ca)\)
Step 3: Simplify: \(121 = 81 + 2(ab + bc + ca)\)
Step 4: Solve for \(ab + bc + ca\):
\(2(ab + bc + ca) = 121 – 81 = 40\)
\(ab + bc + ca = \frac{40}{2} = 20\)
Answer:20


Q12: If \(3x-4y=5\) and \(xy=3\), find: \(27x^3-64y^3\).

Step 1: Recognize the identity for difference of cubes: \(a^3-b^3=(a-b)\,(a^2+ab+b^2)\).
Step 2: Write \(27x^3-64y^3=(3x)^3-(4y)^3=(3x-4y)\big[(3x)^2+(3x)(4y)+(4y)^2\big]\).
Step 3: Compute the middle bracket using \(xy=3\): \((3x)(4y)=12xy=36\).
Step 4: Find \(9x^2+16y^2\) from \((3x-4y)^2=9x^2-24xy+16y^2\). Since \(3x-4y=5\) and \(xy=3\),
\(\;\;\;9x^2+16y^2=(3x-4y)^2+24xy=5^2+24\cdot3=25+72=97\).
Step 5: Therefore, the bracket equals \(9x^2+16y^2+12xy=97+36=133\).
Step 6: Hence \(27x^3-64y^3=(3x-4y)\times133=5\times133=665\).
Answer:665


Q13: If \(a+b=8\) and \(ab=15\), find: \(a^3+b^3\)

Step 1: Recall the sum of cubes identity: \(a^3+b^3 = (a+b)^3 – 3ab(a+b)\)
Step 2: Substitute the given values \(a+b=8\) and \(ab=15\): \(a^3+b^3 = (8)^3 – 3(15)(8)\)
Step 3: Simplify each term: \((8)^3 = 512\)
\(3*15*8 = 360\)
Step 4: Compute: \(a^3+b^3 = 512 – 360 = 152\)
Answer:152


Q14: If \(3x+2y=9\) and \(xy=3\), find: \(27x^3+8y^3\)

Step 1: Use sum of cubes: \(a^3+b^3=(a+b)\,(a^2-ab+b^2)\).
Step 2: Let \(a=3x,\; b=2y\). Then \(27x^3+8y^3=(3x)^3+(2y)^3=(3x+2y)\big[(3x)^2-(3x)(2y)+(2y)^2\big]\).
Step 3: We know \(3x+2y=9\) and \(xy=3\Rightarrow (3x)(2y)=6xy=18\).
Step 4: Find \(9x^2+4y^2\) from \((3x+2y)^2=9x^2+12xy+4y^2\). Thus \(9x^2+4y^2=9^2-12\cdot3=81-36=45\).
Step 5: Now the bracket is \(9x^2-6xy+4y^2=(9x^2+4y^2)-6xy=45-18=27\).
Step 6: Therefore \(27x^3+8y^3=(3x+2y)\times27=9\times27=243\).
Answer:243


Q15: If \(5x-4y=7\) and \(xy=8\), find: \(125x^3-64y^3\)

Step 1: Recognize the difference of cubes identity:
\((a^3 – b^3) = (a-b)(a^2 + ab + b^2)\)
Step 2: Express \(125x^3 – 64y^3\) as cubes:
\((5x)^3 – (4y)^3 = (5x – 4y) \left[(5x)^2 + (5x)(4y) + (4y)^2 \right ]\)
Step 3: Substitute the given values: \[ 5x – 4y = 7 \\ (5x)(4y) = 20xy = 20 \cdot 8 = 160 \\ (5x)^2 = 25x^2, \ (4y)^2 = 16y^2 \]Step 4: Compute \((5x)^2 + (5x)(4y) + (4y)^2\): \[ 25x^2 + 16y^2 + 160 \]Step 5: Express \(25x^2 + 16y^2\) in terms of \((5x-4y)^2\) and \(xy\): \[ (5x-4y)^2 = 25x^2 – 40xy + 16y^2 = 25x^2 – 320 + 16y^2 \\ \Rightarrow 25x^2 + 16y^2 = (5x-4y)^2 + 320 = 7^2 + 320 = 49 + 320 = 369 \]Step 6: Compute \(125x^3-64y^3\):
\(125x^3-64y^3 = (5x-4y)[(5x)^2 + (5x)(4y) + (4y)^2] = 7 \cdot (369 + 160) = 7 \cdot 529 = 3703\)
Answer:3703


Q16: The difference between two numbers is 5 and their product is 14. Find the difference between their cubes.

Step 1: Recall the identity for the difference of cubes:
\((a^3 – b^3) = (a-b)(a^2 + ab + b^2)\)
Step 2: Let the two numbers be \(a\) and \(b\). Given:
\(a-b = 5, \quad ab = 14\)
Step 3: Express \(a^2 + ab + b^2\) in terms of \(a-b\) and \(ab\): \[ (a-b)^2 = a^2 – 2ab + b^2 \Rightarrow a^2 + b^2 = (a-b)^2 + 2ab = 5^2 + 2 \cdot 14 = 25 + 28 = 53 \\ a^2 + ab + b^2 = a^2 + b^2 + ab = 53 + 14 = 67 \]Step 4: Compute the difference of cubes: \[ a^3 – b^3 = (a-b)(a^2 + ab + b^2) = 5 \cdot 67 = 335 \]Answer:335


previous
next

Share the Post:

Leave a Comment

Your email address will not be published. Required fields are marked *

Related Posts​

factorization class 8 rs aggarwal

Factorization

Step by Step solutions of Exercise- 14B of RS Aggarwal ICSE Class-8 Maths chapter 14-...
Read More

Join Our Newsletter

Name
Email
The form has been submitted successfully!
There has been some error while submitting the form. Please verify all form fields again.
Scroll to Top