Identities

identities class 8 selina

Step by Step solutions of Exercise- 12B Concise Mathematics ICSE Class-8 Maths chapter 12- Identities by Selina is provided.

a

Exercise: 12-B

Q1: Multiple Choice Type:

i. If \(x-\frac{1}{x}=3\), the value of \(x^2+\frac{1}{x^2}\) is:

Step 1: Recall the identity: \((x-\frac{1}{x})^2 = x^2 – 2 + \frac{1}{x^2}\)
Step 2: Substitute: \(3^2 = x^2 – 2 + \frac{1}{x^2}\)
Step 3: \(9 = x^2 + \frac{1}{x^2} – 2\)
Step 4: \(x^2 + \frac{1}{x^2} = 9 + 2 = 11\)
Answer: c. 11

ii. If \(a+b=7\) and \(ab=10\); the value of \(a^2+b^2\) is equal to

Step 1: Use the identity \( (a+b)^2 = a^2 + 2ab + b^2 \)
Step 2: \(7^2 = a^2 + b^2 + 2\cdot10\)
Step 3: \(49 = a^2 + b^2 + 20\)
Step 4: \(a^2 + b^2 = 49 – 20 = 29\)
Answer: a. 29

iii. The value of \(\frac{95\times95-5\times5}{95-5}\) is equal to:

Step 1: Recognize the identity \(p^2 – q^2 = (p-q)(p+q)\)
Step 2: \(95^2 – 5^2 = (95-5)(95+5) = 90 \cdot 100\)
Step 3: Divide by \(95-5 = 90\): \(\frac{90\cdot100}{90} = 100\)
Answer: a. 100

iv. If \(a-b=1\) and \(a+b=3\), the value of ab is:

Step 1: Use the identity \((a+b)^2 – (a-b)^2 = 4ab\)
Step 2: \((3)^2 – (1)^2 = 4ab\)
Step 3: \(9 – 1 = 4ab \Rightarrow 8 = 4ab\)
Step 4: \(ab = \frac{8}{4} = 2\)
Answer: b. 2

v. If \(x+\frac{1}{x}=2\), the value of \(\left(x^3+\frac{1}{x^3}\right)-\left(x^2+\frac{1}{x^2}\right)\)is:

Step 1: Use identity \( x^3 + \frac{1}{x^3} = (x+\frac{1}{x})^3 – 3(x+\frac{1}{x}) \)
Step 2: \( x^3 + \frac{1}{x^3} = 2^3 – 3\cdot 2 = 8 – 6 = 2\)
Step 3: Use identity \( x^2 + \frac{1}{x^2} = (x+\frac{1}{x})^2 – 2 = 2^2 – 2 = 4 – 2 = 2\)
Step 4: Compute \(\left(x^3+\frac{1}{x^3}\right) – \left(x^2+\frac{1}{x^2}\right) = 2 – 2 = 0\)
Answer: a. 0


Q2: If \(a+b=5\) and \(ab=6\), find \(a^2+b^2\).

Step 1: Recall the identity: \((a+b)^2 = a^2 + 2ab + b^2\)
Step 2: Rearrange to find \(a^2+b^2\):
\(a^2+b^2 = (a+b)^2 – 2ab\)
Step 3: Substitute the given values: \(a^2+b^2 = 5^2 – 2\cdot6\)
Step 4: Simplify: \(a^2+b^2 = 25 – 12 = 13\)
Answer:13


Q3: If \(a-b=6\) and \(ab=16\), find \(a^2+b^2\)

Step 1: Recall the identity: \((a-b)^2 = a^2 – 2ab + b^2\)
Step 2: Rearrange to find \(a^2+b^2\):
\(a^2 + b^2 = (a-b)^2 + 2ab\)
Step 3: Substitute the given values: \(a^2 + b^2 = 6^2 + 2\cdot16\)
Step 4: Simplify: \(a^2 + b^2 = 36 + 32 = 68\)
Answer:68


Q4: If \(a^2+b^2=29\) and \(ab=10\); find:

i. Find \(a + b\)

Step 1: Recall identity: \((a+b)^2 = a^2 + 2ab + b^2\)
Step 2: Substitute given values: \((a+b)^2 = 29 + 2\cdot10 = 29 + 20 = 49\)
Step 3: Take square root: \(a+b = \sqrt{49} = \pm 7\)
Answer:\(\pm 7\)

ii. Find \(a – b\)

Step 1: Recall identity: \((a-b)^2 = a^2 – 2ab + b^2\)
Step 2: Substitute given values: \((a-b)^2 = 29 – 2\cdot10 = 29 – 20 = 9\)
Step 3: Take square root: \(a-b = \sqrt{9} = \pm 3\)
Answer:\(\pm 3\)


Q5: If \(a^2+b^2=10\) and \(ab=3\); find:

i. Find \(a-b\)

Step 1: Recall identity: \((a-b)^2 = a^2 – 2ab + b^2
Step 2: Substitute given values: \((a-b)^2 = 10 – 2\cdot3 = 10 – 6 = 4\)
Step 3: Take square root: \(a-b = \sqrt{4} = v2\)
Answer:\(\pm 2\)

ii. Find \(a+b\)

Step 1: Recall identity: \((a+b)^2 = a^2 + 2ab + b^2
Step 2: Substitute given values: \((a+b)^2 = 10 + 2\cdot3 = 10 + 6 = 16\)
Step 3: Take square root: \(a+b = \sqrt{16} = \pm 4\)
Answer:\(\pm 4\)


Q6: If \(a+\frac{1}{a}=3\), find: \(a^2+\frac{1}{a^2}\)

Step 1: Recall the identity: \((a + \frac{1}{a})^2 = a^2 + 2 + \frac{1}{a^2}\)
Step 2: Rearrange to find \(a^2 + \frac{1}{a^2}\):
\(a^2 + \frac{1}{a^2} = (a + \frac{1}{a})^2 – 2\)
Step 3: Substitute the given value: \(a^2 + \frac{1}{a^2} = 3^2 – 2 = 9 – 2 = 7\)
Answer:7


Q7: If \(a-\frac{1}{a}=4\), find: \(a^2+\frac{1}{a^2}\)

Step 1: Recall the identity: \((a – \frac{1}{a})^2 = a^2 – 2 + \frac{1}{a^2}\)
Step 2: Rearrange to find \(a^2 + \frac{1}{a^2}\):
\(a^2 + \frac{1}{a^2} = (a – \frac{1}{a})^2 + 2\)
Step 3: Substitute the given value: \(a^2 + \frac{1}{a^2} = 4^2 + 2 = 16 + 2 = 18\)
Answer:18


Q8: If \(a^2+\frac{1}{a^2}=23\), find: \(a+\frac{1}{a}\)

Step 1: Recall the identity: \((a + \frac{1}{a})^2 = a^2 + 2 + \frac{1}{a^2}\)
Step 2: Rearrange to find \(a + \frac{1}{a}\):
\((a + \frac{1}{a})^2 = a^2 + \frac{1}{a^2} + 2\)
Step 3: Substitute the given value: \((a + \frac{1}{a})^2 = 23 + 2 = 25\)
Step 4: Take square root: \(a + \frac{1}{a} = \sqrt{25} = \pm 5\)
Answer:\(\pm 5\)


Q9: If \(a^2+\frac{1}{a^2}=11\), find: \(a-\frac{1}{a}\)

Step 1: Recall the identity: \((a – \frac{1}{a})^2 = a^2 + \frac{1}{a^2} – 2\)
Step 2: Substitute the given value: \((a – \frac{1}{a})^2 = 11 – 2 = 9\)
Step 3: Take square root: \(a – \frac{1}{a} = \sqrt{9} = \pm 3\)
Answer:\(\pm 3\)


Q10: If \(a+b+c=10\) and \(a^2+b^2+c^2=38\), find: \(ab+bc+ca\)

Step 1: Recall the identity: \((a+b+c)^2 = a^2 + b^2 + c^2 + 2(ab+bc+ca)\)
Step 2: Substitute the given values:
\((10)^2 = 38 + 2(ab+bc+ca)\)
Step 3: Simplify: \(100 = 38 + 2(ab+bc+ca)\)
Step 4: Solve for \(ab+bc+ca\):
\(2(ab+bc+ca) = 100 – 38 = 62\)
\(ab+bc+ca = \frac{62}{2} = 31\)
Answer:31


Q11: Find: \(a^2+b^2+c^2\), if \(a+b+c=9\) and \(ab+bc+ca=24\)

Step 1: Recall the identity: \((a+b+c)^2 = a^2 + b^2 + c^2 + 2(ab+bc+ca)\)
Step 2: Rearrange to find \(a^2 + b^2 + c^2\):
\(a^2 + b^2 + c^2 = (a+b+c)^2 – 2(ab+bc+ca)\)
Step 3: Substitute the given values:
\(a^2 + b^2 + c^2 = 9^2 – 2(24) = 81 – 48 = 33\)
Answer:33


Q12: Find: \(a+b+c\), if \(a^2+b^2+c^2=83\) and \(ab+bc+ca=71\)

Step 1: Recall the identity: \((a+b+c)^2 = a^2 + b^2 + c^2 + 2(ab+bc+ca)\)
Step 2: Substitute the given values:
\((a+b+c)^2 = 83 + 2(71) = 83 + 142 = 225\)
Step 3: Take square root: \(a+b+c = \sqrt{225} = \pm 15\)
Answer:\(\pm 15\)


Q13: If \(a+b=6\) and \(ab=8\), find: \(a^3+b^3\)

Step 1: Recall the identity: \(a^3 + b^3 = (a+b)^3 – 3ab(a+b)\)
Step 2: Substitute the given values:
\(a^3 + b^3 = 6^3 – 3(8)(6)\)
Step 3: Simplify:
\(a^3 + b^3 = 216 – 144 = 72\)
Answer:72


Q14: If \(a-b=3\) and \(ab=10\), find \(a^3-b^3\)

Step 1: Recall the identity: \(a^3 – b^3 = (a-b)(a^2 + ab + b^2)\)
Step 2: Find \(a^2 + b^2\) using \((a-b)^2 = a^2 – 2ab + b^2\):
\((a-b)^2 = a^2 – 2ab + b^2\)
\(3^2 = a^2 – 2(10) + b^2\)
\(9 = a^2 + b^2 – 20\)
\(a^2 + b^2 = 29\)
Step 3: Compute \(a^2 + ab + b^2\):
\(a^2 + ab + b^2 = 29 + 10 = 39\)
Step 4: Substitute into \(a^3 – b^3 = (a-b)(a^2 + ab + b^2)\):
\(a^3 – b^3 = 3 \cdot 39 = 117\)
Answer:117


Q15: Find: \(a^3+\frac{1}{a^3}\), if \(a+\frac{1}{a}=5\)

Step 1: Recall the identity: \(a^3 + \frac{1}{a^3} = (a + \frac{1}{a})^3 – 3(a + \frac{1}{a})\)
Step 2: Substitute the given value:
\(a^3 + \frac{1}{a^3} = 5^3 – 3(5)\)
Step 3: Simplify:
\(a^3 + \frac{1}{a^3} = 125 – 15 = 110\)
Answer:110


Q16: Find: \(a^3-\frac{1}{a^3}\), if \(a-\frac{1}{a}=4\)

Step 1: Recall the identity: \(a^3 – \frac{1}{a^3} = (a – \frac{1}{a})^3 + 3(a – \frac{1}{a})\)
Step 2: Substitute the given value:
\(a^3 – \frac{1}{a^3} = 4^3 + 3(4)\)
Step 3: Simplify:
\(a^3 – \frac{1}{a^3} = 64 + 12 = 76\)
Answer:76


Q17: If \(2x-\frac{1}{2x}=4\), find:

i. \(4x^2+\frac{1}{4x^2}\)

Step 1: Recall the identity: \(\left(a – \frac{1}{a}\right)^2 = a^2 + \frac{1}{a^2} – 2\)
Let \(a = 2x\), then:
\((2x – \frac{1}{2x})^2 = (2x)^2 + \frac{1}{(2x)^2} – 2\)
Step 2: Substitute the given value:
\(4^2 = 4x^2 + \frac{1}{4x^2} – 2\)
Step 3: Solve for \(4x^2 + \frac{1}{4x^2}\):
\(16 = 4x^2 + \frac{1}{4x^2} – 2\)
\(4x^2 + \frac{1}{4x^2} = 16 + 2 = 18\)
Answer:18

ii. \(8x^3+\frac{1}{8x^3}\)

Step 1: Recall the identity: \(\left(a – \frac{1}{a}\right)^3 = a^3 – \frac{1}{a^3} – 3\left(a – \frac{1}{a}\right)\)
Let \(a = 2x\), then:
\((2x – \frac{1}{2x})^3 = (2x)^3 – \frac{1}{(2x)^3} – 3(2x – \frac{1}{2x})\)
Step 2: Substitute the given value:
\(4^3 = 8x^3 – \frac{1}{8x^3} – 3(4)\)
Step 3: Simplify:
\(64 = 8x^3 – \frac{1}{8x^3} – 12\)
\(8x^3 – \frac{1}{8x^3} = 64 + 12 = 76\)
Answer:76


Q18: If \(3x+\frac{1}{3x}=3\), find:

i. \(9x^2 + \frac{1}{9x^2}\)

Step 1: Recall the identity: \((a + \frac{1}{a})^2 = a^2 + \frac{1}{a^2} + 2\)
Step 2: Let \(a = 3x\), then:
\((3x + \frac{1}{3x})^2 = (3x)^2 + \frac{1}{(3x)^2} + 2\)
Step 3: Substitute the given value:
\(3^2 = 9x^2 + \frac{1}{9x^2} + 2\)
Step 4: Solve for \(9x^2 + \frac{1}{9x^2}\):
\(9x^2 + \frac{1}{9x^2} = 9 – 2 = 7\)
Answer:7

ii. \(27x^3 + \frac{1}{27x^3}\)

Step 1: Recall the identity: \((a + \frac{1}{a})^3 = a^3 + \frac{1}{a^3} + 3(a + \frac{1}{a})\)
Step 2: Let \(a = 3x\), then:
\((3x + \frac{1}{3x})^3 = (27x^3 + \frac{1}{27x^3}) + 3(3x + \frac{1}{3x})\)
Step 3: Substitute the given value:
\(3^3 = 27x^3 + \frac{1}{27x^3} + 3(3)\)
Step 4: Simplify:
\(27 = 27x^3 + \frac{1}{27x^3} + 9\)
\(27x^3 + \frac{1}{27x^3} = 27 – 9 = 18\)
Answer:18


Q19: The sum of the square of two numbers is 13 and their product is 6. Find :

i. The sum of the two numbers

Step 1: Let the two numbers be \(a\) and \(b\). Recall the identity:
\((a+b)^2 = a^2 + b^2 + 2ab\)
Step 2: Substitute the given values \(a^2+b^2 = 13\) and \(ab = 6\):
\((a+b)^2 = 13 + 2(6)\)
Step 3: Simplify:
\((a+b)^2 = 13 + 12 = 25\)
\(a+b = \sqrt{25} = \pm 5\)
Answer:\(\pm 5\)

ii. The difference between them.

Step 1: Recall the identity:
\((a-b)^2 = a^2 + b^2 – 2ab\)
Step 2: Substitute the given values:
\((a-b)^2 = 13 – 2(6)\)
Step 3: Simplify:
\((a-b)^2 = 13 – 12 = 1\)
\(a-b = \sqrt{1} = \pm 1\)
Answer:\(\pm 1\)


previous
next


Share the Post:

Leave a Comment

Your email address will not be published. Required fields are marked *

Related Posts​

sets class 8 rs aggarwal

Sets

Step by Step solutions of RS Aggarwal ICSE Class-8 Maths chapter 5- Sets by Goyal...
Read More
fraction class7 selina

Fractions

Step by Step solutions of Concise Mathematics ICSE Class-7 Maths chapter 3- Fractions by Selina...
Read More

Join Our Newsletter

Name
Email
The form has been submitted successfully!
There has been some error while submitting the form. Please verify all form fields again.
Scroll to Top