Factorization

factorization class 8 rs aggarwal

Step by Step solutions of Exercise- 14B of RS Aggarwal ICSE Class-8 Maths chapter 14- Factorization by Goyal Brothers Prakashan is provided.

Exercise: 14-B

Q1: 5xy + 20x − 9y − 36

Step 1: Group the terms in pairs:
= (5xy + 20x) − (9y + 36)
Step 2: Take out common factor from each group:
= 5x(y + 4) − 9(y + 4)
Step 3: Now (y + 4) is common.
= (y + 4)(5x − 9)
Step 4 (Verification): Expand to check:
(y + 4)(5x − 9) = 5xy + 20x − 9y − 36 ✔️
Answer: (y + 4)(5x − 9)


Q2: 5ab − 10b − 7a + 14

Step 1: Group the terms in pairs:
= (5ab − 10b) − (7a − 14)
Step 2: Take out common factor from each group:
= 5b(a − 2) − 7(a − 2)
Step 3: Now (a − 2) is common.
= (a − 2)(5b − 7)
Step 4 (Verification): Expand to check:
(a − 2)(5b − 7) = 5ab − 10b − 7a + 14 ✔️
Answer: (a − 2)(5b − 7)


Q3: 9xy + 7y − 9y² − 7x

Step 1: Group the terms in pairs:
= (9xy − 9y²) + (7y − 7x)
Step 2: Take out common factor from each group:
= 9y(x − y) − 7(x − y)
Step 3: Now (x − y) is common.
= (x − y)(9y − 7)
Step 4 (Verification): Expand to check:
(x − y)(9y − 7) = 9xy + 7y − 9y² − 7x ✔️
Answer: (x − y)(9y − 7)


Q4: 3ax − 6ay − 8by + 4bx

Step 1: Group the terms in pairs:
= (3ax − 6ay) + (4bx − 8by)
Step 2: Take out common factor from each group:
= 3a(x − 2y) + 4b(x − 2y)
Step 3: Now (x − 2y) is common.
= (x − 2y)(3a + 4b)
Step 4 (Verification): Expand to check:
(x − 2y)(3a + 4b) = 3ax − 6ay + 4bx − 8by ✔️
Answer: (x − 2y)(3a + 4b)


Q5: 4x² − 10xy − 6xz + 15yz

Step 1: Group the terms in pairs:
= (4x² − 10xy) − (6xz − 15yz)
Step 2: Take out common factor from each group:
= 2x(2x − 5y) − 3z(2x − 5y)
Step 3: Now (2x − 5y) is common.
= (2x − 5y)(2x − 3z)
Step 4 (Verification): Expand to check:
(2x − 5y)(2x − 3z) = 4x² − 6xz − 10xy + 15yz ✔️
Answer: (2x − 5y)(2x − 3z)


Q6: 3ab − 6bc − 3ax + 6cx

Step 1: Group the terms in pairs:
= (3ab − 3ax) − (6bc − 6cx)
Step 2: Take out common factor from each group:
= 3a(b − x) − 6c(b − x)
Step 3: Now (b − x) is common.
= (b − x)(3a − 6c)
Step 4: Simplify further:
= (b − x)·3(a − 2c)
Step 5 (Verification): Expand to check:
3(b − x)(a − 2c) = 3ab − 6bc − 3ax + 6cx ✔️
Answer: 3(b − x)(a − 2c)


Q7: a² + ab(1+b) + b³

Step 1: Expand the middle term:
= a² + ab + ab² + b³
Step 2: Group the terms in pairs:
= (a² + ab) + (ab² + b³)
Step 3: Take out common factor from each group:
= a(a + b) + b²(a + b)
Step 4: Now (a + b) is common.
= (a + b)(a + b²)
Step 5 (Verification): Expand to check:
(a + b)(a + b²) = a² + ab² + ab + b³ ✔️
Answer: (a + b)(a + b²)


Q8: xy² + (x−1)y − 1

Step 1: Expand the middle term:
= xy² + xy − y − 1
Step 2: Group the terms in pairs:
= (xy² + xy) − (y + 1)
Step 3: Take out common factor from each group:
= x·y(y + 1) − 1(y + 1)
Step 4: Now (y + 1) is common.
= (y + 1)(xy − 1)
Step 5 (Verification): Expand to check:
(y + 1)(xy − 1) = xy² + xy − y − 1 ✔️
Answer: (y + 1)(xy − 1)


Q9: b² − ab(1 − a) − a³

Step 1: Expand the middle term:
−ab(1 − a) = −ab + a²b
Step 2: Substitute to get a four-term expression:
= b² − ab + a²b − a³
Step 3: Group the terms in pairs:
= (b² − ab) + (a²b − a³)
Step 4: Factor out common factors from each group:
= b(b − a) + a²(b − a)
Step 5: Now (b − a) is common.
= (b − a)(b + a²)
Step 6 (Verification): Expand to check:
(b − a)(b + a²) = b² + a²b − ab − a³ = b² − ab + a²b − a³ ✔️
Answer: (b − a)(b + a²)


Q10: y² − y(2b + a) + 2ab

Step 1: Expand the middle term:
= y² − 2by − ay + 2ab
Step 2: Group the terms in pairs:
= (y² − ay) − (2by − 2ab)
Step 3: Factor out common terms:
= y(y − a) − 2b(y − a)
Step 4: Now (y − a) is common.
= (y − a)(y − 2b)
Step 5 (Verification): Expand to check:
(y − a)(y − 2b) = y² − 2by − ay + 2ab ✔️
Answer: (y − a)(y − 2b)


Q11: x − 2 − (x − 2)² + ax − 2a

Step 1: Expand (x − 2)²:
= x − 2 − (x² − 4x + 4) + ax − 2a
Step 2: Simplify:
= −x² + (a+5)x − (2a+6)
Step 3: This is a quadratic. Factorise using discriminant method.
D = (a+5)² − 4(2a+6) = (a+1)²
Step 4: Roots of the quadratic:
x = (a+3),x = 2
Step 5: So factorised form:
= −(x − (a+3))(x − 2) = (x − 2)(3 + a – x)
Step 6 (Verification): Expand:
(x − 2)(3 + a – x) = −x² + (a+5)x − (2a+6) ✔️
Answer: (x − 2)(3 + a – x)


Q12: x − 1 − (x − 1)² + 4 − 4x

Step 1: Expand (x − 1)²:
= x − 1 − (x² − 2x + 1) + 4 − 4x
Step 2: Simplify:
= −x² − x + 2
Step 3: Factorise:
= −(x² + x − 2)
= −[(x² + 2x) − (x+2)]
= −(x−1)(x+2)
Answer: −(x − 1)(x + 2)


Q13: b(c − d)² − a(d − c) + 5c − 5d

Step 1: Replace (d − c) = −(c − d):
= b(c − d)² + a(c − d) + 5c − 5d
Step 2: Group the terms:
= b(c − d)² + a(c − d) + 5(c − d)
Step 3: Take common factor (c − d):
= (c − d)[b(c − d) + a + 5] = (c − d)(bc − bd + a + 5)
Answer: (c − d)(bc − bd + a + 5)


Q14: ab(c² + d²) − a²cd − b²cd

Step 1: Expand expression clearly:
= ab(c² + d²) − a²cd − b²cd
Step 2: Group the terms:
= (abc² + abd²) − (a²cd + b²cd)
Step 3: Take out common factors:
= ab(c² + d²) − cd(a² + b²)
Step 4: Rearrange in pairs:
= (ac)(bc) + (ad)(bd) − (ac)(ad) − (bc)(bd)
Step 5: Group again:
= (ac)(bc − ad) + (bd)(ad − bc)
= (ac)(bc − ad) − (bd)(bc − ad)
Step 6: Factorise common term (bc − ad):
= (bc − ad)(ac − bd)
Answer: (bc − ad)(ac − bd)


Q15: ab(x² + y²) + xy(a² + b²)

Step 1: Expand expression:
= abx² + aby² + a²xy + b²xy
Step 2: Rearrange terms for grouping:
= (abx² + a²xy) + (aby² + b²xy)
Step 3: Factorise each group:
= ax(bx + ay) + by(ay + bx)
Step 4: Notice common factor (ax + by):
= (ax + by)(bx + ay)
Answer: (ax + by)(bx + ay)


Q16: ab(x² + y²) − xy(a² + b²)

Step 1: Expand expression:
= abx² + aby² − a²xy − b²xy
Step 2: Rearrange terms for grouping:
= (abx² − a²xy) + (aby² − b²xy)
Step 3: Factorise each group:
= ax(bx − ay) − by(bx − ay)
Step 4: Take out the common factor (bx − ay):
= (bx − ay)(ax − by)
Answer: (bx − ay)(ax − by)


Q17: (ax + by)² + (bx − ay)²

Step 1: Expand each square:
(ax + by)² = a²x² + 2abxy + b²y²
(bx − ay)² = b²x² − 2abxy + a²y²
Step 2: Add both expansions:
= (a²x² + 2abxy + b²y²) + (b²x² − 2abxy + a²y²)
= a²x² + b²x² + a²y² + b²y²
Step 3: Group terms by common factor:
= (a² + b²)x² + (a² + b²)y²
Step 4: Take common (a² + b²):
= (a² + b²)(x² + y²)
Answer: (a² + b²)(x² + y²)


Q18: a(a + b − c) − bc

Step 1: Expand the bracket:
a(a + b − c) = a² + ab − ac
Expression = a² + ab − ac − bc
Step 2: Group the terms:
= (a² + ab) − (ac + bc)
Step 3: Take common factors:
= a(a + b) − c(a + b)
Step 4: Take out (a + b):
= (a + b)(a − c)
Answer: (a + b)(a − c)


Q19: a(a − 2b − c) + 2bc

Step 1: Expand the bracket:
a(a − 2b − c) = a² − 2ab − ac
Expression = a² − 2ab − ac + 2bc
Step 2: Group the terms:
= (a² − 2ab) − (ac − 2bc)
Step 3: Take common factors:
= a(a − 2b) − c(a − 2b)
Step 4: Take out (a − 2b):
= (a − 2b)(a − c)
Answer: (a − 2b)(a − c)


Q20: 3x⁵ − 6x⁴ − 2x³ + 4x² + x − 2

Step 1: Group the terms:
= (3x⁵ − 6x⁴) + (−2x³ + 4x²) + (x − 2)
Step 2: Take out common factors:
= 3x⁴(x − 2) − 2x²(x − 2) + 1(x − 2)
Step 3: Take out common (x − 2):
= (x − 2)(3x⁴ − 2x² + 1)
Step 4: Check further factorisation:
Since 3x⁴ − 2x² + 1 has no real factors, we keep it as is.
Answer: (x − 2)(3x⁴ − 2x² + 1)


Q21: 2a + 2b – 3cx – 3bx + 2c – 3ax

Step 1: Group the terms suitably: \[ = (2a + 2b) + (-3cx – 3bx – 3ax) + (2c) \] or better as: \[ = (2a + 2b) + (-3ax – 3bx – 3cx) + 2c \]Step 2: Factor common terms in each group: \[ = 2(a + b) – 3x(a + b + c) + 2c \]Step 3: Combine the terms involving \(a + b\): \[ = 2(a + b) – 3x(a + b) – 3xc + 2c \\ = (a + b)(2 – 3x) + c(2 – 3x) \]Step 4: Factor out the common factor \((2 – 3x)\): \[ = (2 – 3x)\left[(a + b) + c\right] \\ = (2 – 3x)(a + b + c) \]Answer: \((2 – 3x)(a + b + c)\)


Q22: a²b² + b² + a² + 1

Step 1: Group the terms:
= (a²b² + b²) + (a² + 1)
Step 2: Take common factors:
= b²(a² + 1) + 1(a² + 1)
Step 3: Factorise further:
= (a² + 1)(b² + 1)
Answer: (a² + 1)(b² + 1)


previous
next

Share the Post:

Leave a Comment

Your email address will not be published. Required fields are marked *

Related Posts​

integers class 7

Integers

Step by Step solutions of RS Aggarwal ICSE Class-7 Maths chapter 1- Integers by Goyal...
Read More

Join Our Newsletter

Name
Email
The form has been submitted successfully!
There has been some error while submitting the form. Please verify all form fields again.
Scroll to Top