Rational Numbers

rational numbers class 8 selina

Table of Contents

Exercise: 1-A

Q1: Multiple Choice Type

i. A number which is not rational is called:
Explanation:
Rational numbers can be expressed in the form \(\frac{p}{q}\), where \(p, q \in \mathbb{Z}\), and \(q \ne 0\).
Numbers that cannot be expressed in this form are called irrational numbers.
Example: \(\sqrt{2}, \pi, e\)
Answer: c. an irrational number

ii. If x ≠ 0 then the value of \(\frac{0}{x}\) is.
Explanation: \[ \frac{0}{x} = 0 \quad \text{(since anything multiplied with 0 is 0)} \] And 0 is a rational number (as \(0 = \frac{0}{1}\))
Answer: a. a rational number

iii. The equation 5x + 7 = 0, gives the value of x which is:
Explanation: \[ 5x + 7 = 0 \Rightarrow 5x = -7 \Rightarrow x = \frac{-7}{5} \] \(\frac{-7}{5}\) is a rational number (p/q form)
Answer: c. a rational number

iv. Rational number \(\frac{p}{q}\) is in standard form, if:
Explanation:
Standard form means:
– No common factor between \(p\) and \(q\) (other than 1)
– \(q \ne 0\)
Answer: c. p and q have no common factor and q ≠ 0.

v. The addition of two rational numbers \(\frac{a}{b}\ and\ \frac{c}{d}\) is commutative, if:
Explanation:
Commutative property of addition states: \[ a + b = b + a \] This holds true for rational numbers as well.
Answer: c. \(\frac{a}{b} + \frac{c}{d} = \frac{c}{d} + \frac{a}{b}\)

vi. \(-\frac{3}{7}+\) additive inverse of \(\frac{-3}{7}\) is:
Explanation:
Additive inverse of \(\frac{-3}{7}\) is \(\frac{3}{7}\) \[ -\frac{3}{7} + \frac{3}{7} = 0 \] Answer: b. 0


Q2: Add each pair of rational numbers, given below, and show that their addition (sum) is also a rational number:

i. \(\frac{-5}{8}\ and\ \frac{3}{8}\) \[ \frac{-5}{8} + \frac{3}{8} = \frac{-5 + 3}{8} = \frac{-2}{8} = \frac{-1}{4} \] Answer: \(\frac{-1}{4}\) — a rational number

ii. \(\frac{-8}{13}\) and \(\frac{-4}{13}\) \[ \frac{-8}{13} + \frac{-4}{13} = \frac{-8 – 4}{13} = \frac{-12}{13} \] Answer: \(\frac{-12}{13}\) — a rational number

iii. \(\frac{6}{11}\ and\ \frac{-9}{11}\)) \[ \frac{6}{11} + \frac{-9}{11} = \frac{6 – 9}{11} = \frac{-3}{11} \] Answer: \(\frac{-3}{11}\) — a rational number

iv. \(\frac{5}{-26}\ and\ \frac{8}{39}\)
Convert \(\frac{5}{-26} = \frac{-5}{26}\)
LCM of 26 and 39 = 78 \[ \frac{-5}{26} = \frac{-15}{78}, \quad \frac{8}{39} = \frac{16}{78} \] \[ \frac{-15}{78} + \frac{16}{78} = \frac{1}{78} \] Answer: \(\frac{1}{78}\) — a rational number

v. \(\frac{5}{-6}\ and\ \frac{2}{3}\)
Convert \(\frac{5}{-6} = \frac{-5}{6}\) \[ \frac{-5}{6} + \frac{2}{3} = \frac{-5}{6} + \frac{4}{6} = \frac{-1}{6} \] Answer: \(\frac{-1}{6}\) — a rational number

vi. \(2\ and\ \frac{2}{5}\)
\[ -2 + \frac{2}{5} = \frac{-10}{5} + \frac{2}{5} = \frac{-8}{5} \]
Answer: \(\frac{-8}{5}\) — a rational number

vii. \(\frac{9}{-4}\ and\frac{-3}{8} \)
Convert \(\frac{9}{-4} = \frac{-9}{4}\)
LCM of 4 and 8 = 8 \[ \frac{-9}{4} = \frac{-18}{8}, \quad \frac{-3}{8} = \frac{-3}{8} \] \[ \frac{-18}{8} + \frac{-3}{8} = \frac{-21}{8} \] Answer: \(\frac{-21}{8}\) — a rational number

viii. \(\frac{7}{-18}\ and\ \frac{8}{27}\)
Convert \(\frac{7}{-18} = \frac{-7}{18}\)
LCM of 18 and 27 = 54 \[ \frac{-7}{18} = \frac{-21}{54}, \quad \frac{8}{27} = \frac{16}{54} \] \[ \frac{-21}{54} + \frac{16}{54} = \frac{-5}{54} \] Answer: \(\frac{-5}{54}\) — a rational number


Q3: Evaluate

i. \(\frac{5}{9}+\frac{-7}{6}\)
LCM of 9 and 6 = 18 \[ \frac{5}{9} = \frac{10}{18}, \quad \frac{-7}{6} = \frac{-21}{18} \] \[ \frac{10}{18} + \frac{-21}{18} = \frac{-11}{18} \] Answer: \(\frac{-11}{18}\)

ii. \(4+\frac{3}{-5}\)
Convert \(\frac{3}{-5} = \frac{-3}{5}\) \[ 4 = \frac{20}{5}, \quad \frac{-3}{5} = \frac{-3}{5} \] \[ \frac{20}{5} + \frac{-3}{5} = \frac{17}{5} \] Answer: \(\frac{17}{5}\)

iii. \(\frac{1}{-15}+\frac{5}{-12}\)
Convert: \(\frac{1}{-15} = \frac{-1}{15},\ \frac{5}{-12} = \frac{-5}{12}\)
LCM of 15 and 12 = 60 \[ \frac{-1}{15} = \frac{-4}{60}, \quad \frac{-5}{12} = \frac{-25}{60} \] \[ \frac{-4}{60} + \frac{-25}{60} = \frac{-29}{60} \] Answer: \(\frac{-29}{60}\)

iv. \(\frac{5}{9}+\frac{3}{-4}\)
Convert: \(\frac{3}{-4} = \frac{-3}{4}\)
LCM of 9 and 4 = 36 \[ \frac{5}{9} = \frac{20}{36}, \quad \frac{-3}{4} = \frac{-27}{36} \] \[ \frac{20}{36} + \frac{-27}{36} = \frac{-7}{36} \] Answer: \(\frac{-7}{36}\)

v. \(\frac{-8}{9}+\frac{-5}{12}\)
LCM of 9 and 12 = 36 \[ \frac{-8}{9} = \frac{-32}{36}, \quad \frac{-5}{12} = \frac{-15}{36} \] \[ \frac{-32}{36} + \frac{-15}{36} = \frac{-47}{36} \] Answer: \(\frac{-47}{36}\)

vi. \(0+\frac{-2}{7}\) \[ 0 + \frac{-2}{7} = \frac{-2}{7} \] Answer: \(\frac{-2}{7}\)

vii. \(\frac{5}{-11}+0\)
Convert \(\frac{5}{-11} = \frac{-5}{11}\) \[ \frac{-5}{11} + 0 = \frac{-5}{11} \] Answer: \(\frac{-5}{11}\)

viii. \(2+\frac{-3}{5}\) \[ 2 = \frac{10}{5}, \quad \frac{-3}{5} = \frac{-3}{5} \] \[ \frac{10}{5} + \frac{-3}{5} = \frac{7}{5} \] Answer: \(\frac{7}{5}\)

ix. \(\frac{4}{-9}+1\)
Convert \(\frac{4}{-9} = \frac{-4}{9}\) \[ 1 = \frac{9}{9}, \quad \frac{-4}{9} + \frac{9}{9} = \frac{5}{9} \] Answer: \(\frac{5}{9}\)


Q4: Evaluate

i. \(\frac{3}{7}+\frac{-4}{9}+\frac{-11}{7}+\frac{7}{9}\)
Group same denominators: \[ \left(\frac{3}{7} + \frac{-11}{7}\right) + \left(\frac{-4}{9} + \frac{7}{9}\right) \] \[ = \frac{-8}{7} + \frac{3}{9} = \frac{-8}{7} + \frac{1}{3} \] LCM of 7 and 3 = 21 \[ \frac{-8}{7} = \frac{-24}{21}, \quad \frac{1}{3} = \frac{7}{21} \] \[ \frac{-24}{21} + \frac{7}{21} = \frac{-17}{21} \] Answer: \(\frac{-17}{21}\)

ii. \(\frac{2}{3}+\frac{-4}{5}+\frac{1}{3}+\frac{2}{5}\)
Group like denominators: \[ \left(\frac{2}{3} + \frac{1}{3}\right) + \left(\frac{-4}{5} + \frac{2}{5}\right) \] \[ = \frac{3}{3} + \frac{-2}{5} = 1 + \frac{-2}{5} \] \[ = \frac{5}{5} + \frac{-2}{5} = \frac{3}{5} \] Answer: \(\frac{3}{5}\)

iii. \(\frac{4}{7}+0+\frac{-8}{9}+\frac{-13}{7}+\frac{17}{9}\)
Group by denominators: \[ \left(\frac{4}{7} + \frac{-13}{7}\right) + \left(\frac{-8}{9} + \frac{17}{9}\right) + 0 \] \[ = \frac{-9}{7} + \frac{9}{9} = \frac{-9}{7} + 1 \] \[ 1 = \frac{7}{7}, \quad \frac{-9}{7} + \frac{7}{7} = \frac{-2}{7} \] Answer: \(\frac{-2}{7}\)

iv. \(\frac{3}{8}+\frac{-5}{12}+\frac{3}{7}+\frac{3}{12}+\frac{-5}{8}+\frac{-2}{7}\)
Group like denominators: \[ \left(\frac{3}{8} + \frac{-5}{8}\right) + \left(\frac{-5}{12} + \frac{3}{12}\right) + \left(\frac{3}{7} + \frac{-2}{7}\right) \] \[ = \frac{-2}{8} + \frac{-2}{12} + \frac{1}{7} \] Simplify: \(\frac{-2}{8} = \frac{-1}{4}, \quad \frac{-2}{12} = \frac{-1}{6}\)
Now add: \(\frac{-1}{4} + \frac{-1}{6} + \frac{1}{7}\)
LCM of 4, 6, 7 = 84 \[ \frac{-1}{4} = \frac{-21}{84}, \quad \frac{-1}{6} = \frac{-14}{84}, \quad \frac{1}{7} = \frac{12}{84} \] \[ \frac{-21 -14 + 12}{84} = \frac{-23}{84} \] Answer: \(\frac{-23}{84}\)


Q5: For pair of rational numbers, verify the commutative property of addition of rational numbers:

i. \(\frac{-8}{7}\ and\ \frac{5}{14}\)
Check if: \(\frac{-8}{7} + \frac{5}{14} = \frac{5}{14} + \frac{-8}{7}\)
LCM of 7 and 14 = 14 \[ \frac{-8}{7} = \frac{-16}{14}, \quad \frac{-16}{14} + \frac{5}{14} = \frac{-11}{14} \] Now reverse order: \[ \frac{5}{14} + \frac{-8}{7} = \frac{5}{14} + \frac{-16}{14} = \frac{-11}{14} \] Property Verified ✅

ii. \(\frac{5}{9}\ and\ \frac{5}{-12}\)
LCM of 9 and 12 = 36 \[ \frac{5}{9} = \frac{20}{36}, \quad \frac{5}{-12} = \frac{-15}{36} \] \[ \frac{5}{9} + \frac{5}{-12} = \frac{20}{36} + \frac{-15}{36} = \frac{5}{36} \] \[ \frac{5}{-12} + \frac{5}{9} = \frac{-15}{36} + \frac{20}{36} = \frac{5}{36} \] Property Verified ✅

iii. \(\frac{-4}{5}\ and\ \frac{-13}{-15}\)
\(\frac{-13}{-15} = \frac{13}{15}\) (negative cancels)
LCM of 5 and 15 = 15 \[ \frac{-4}{5} = \frac{-12}{15} \] \[ \frac{-12}{15} + \frac{13}{15} = \frac{1}{15} \] \[ \frac{13}{15} + \frac{-12}{15} = \frac{1}{15} \] Property Verified ✅

iv. \(\frac{2}{-5}\ and\ \frac{11}{-15}\)
\(\frac{2}{-5} = \frac{-2}{5}, \quad \frac{11}{-15} = \frac{-11}{15}\)
LCM = 15 \[ \frac{-2}{5} = \frac{-6}{15} \] \[ \frac{-6}{15} + \frac{-11}{15} = \frac{-17}{15} \] \[ \frac{-11}{15} + \frac{-6}{15} = \frac{-17}{15} \] Property Verified ✅

v. \(3\ and\ \frac{-2}{7}\) \[ 3 + \frac{-2}{7} = \frac{21}{7} + \frac{-2}{7} = \frac{19}{7} \] \[ \frac{-2}{7} + 3 = \frac{-2}{7} + \frac{21}{7} = \frac{19}{7} \] Property Verified ✅

vi. \(-2\ and\ \frac{3}{-5}\) \(\frac{3}{-5} = \frac{-3}{5}\)
\[ -2 + \left(\frac{-3}{5}\right) = \frac{-10}{5} + \frac{-3}{5} = \frac{-13}{5} \] \[ \frac{-3}{5} + (-2) = \frac{-3}{5} + \frac{-10}{5} = \frac{-13}{5} \] Property Verified ✅


Q6: For each set of rational numbers, given below, verify the associative property of addition of rational numbers:

i. \(\frac{1}{2},\ \frac{2}{3}\ and-\frac{1}{6}\)
Check if: \((\frac{1}{2} + \frac{2}{3}) + (-\frac{1}{6}) = \frac{1}{2} + (\frac{2}{3} + (-\frac{1}{6}))\)
Left Side: \[ \frac{1}{2} + \frac{2}{3} = \frac{3}{6} + \frac{4}{6} = \frac{7}{6} \] \[ \frac{7}{6} + (-\frac{1}{6}) = \frac{6}{6} = 1 \]Riht Side: \[ \frac{2}{3} + (-\frac{1}{6}) = \frac{4}{6} + (-\frac{1}{6}) = \frac{3}{6} = \frac{1}{2} \] \[ \frac{1}{2} + \frac{1}{2} = 1 \]Property Verified ✅

ii. \(\frac{-2}{5},\ \frac{4}{15}\ and\ \frac{-7}{10}\)
Left Side: \[ \frac{-2}{5} + \frac{4}{15} = \frac{-6}{15} + \frac{4}{15} = \frac{-2}{15} \] \[ \frac{-2}{15} + \frac{-7}{10} = \frac{-4}{30} + \frac{-21}{30} = \frac{-25}{30} = \frac{-5}{6} \]Right Side: \[ \frac{4}{15} + \frac{-7}{10} = \frac{8}{30} + \frac{-21}{30} = \frac{-13}{30} \] \[ \frac{-2}{5} + \frac{-13}{30} = \frac{-12}{30} + \frac{-13}{30} = \frac{-25}{30} = \frac{-5}{6} \]Property Verified ✅

iii. \(\frac{-7}{9},\ \frac{2}{-3}\ and\ \frac{-5}{18}\)
Left Side: \[ \frac{-7}{9} + \frac{-2}{3} = \frac{-14}{18} + \frac{-12}{18} = \frac{-26}{18} \] \[ \frac{-26}{18} + \frac{-5}{18} = \frac{-31}{18} \]Right Side: \[ \frac{-2}{3} + \frac{-5}{18} = \frac{-12}{18} + \frac{-5}{18} = \frac{-17}{18} \] \[ \frac{-7}{9} + \frac{-17}{18} = \frac{-14}{18} + \frac{-17}{18} = \frac{-31}{18} \]Property Verified ✅

iv. \(-1,\ \frac{5}{6}\ and\ \frac{-2}{3}\)
Left Side: \[ -1 + \frac{5}{6} = \frac{-6}{6} + \frac{5}{6} = \frac{-1}{6} \] \[ \frac{-1}{6} + \frac{-2}{3} = \frac{-1}{6} + \frac{-4}{6} = \frac{-5}{6} \]Right Side: \[ \frac{5}{6} + \frac{-2}{3} = \frac{5}{6} + \frac{-4}{6} = \frac{1}{6} \] \[ -1 + \frac{1}{6} = \frac{-6}{6} + \frac{1}{6} = \frac{-5}{6} \]Property Verified ✅


Q7: Write he additive inverse (negative) of:

i. \(\frac{-3}{8}\)
The additive inverse of a number is the number which when added gives 0.
So, we need a number such that: \[ \frac{-3}{8} + x = 0 \Rightarrow x = \frac{3}{8} \] Answer: \(\frac{3}{8}\)

ii. \(\frac{4}{-9}\)
\(\frac{4}{-9} = -\frac{4}{9}\), so its additive inverse is: \[ -\frac{4}{9} + x = 0 \Rightarrow x = \frac{4}{9} \] Answer: \(\frac{4}{9}\)

iii. \(\frac{-4}{-13}\)
\(\frac{-4}{-13} = \frac{4}{13}\), because negative sign cancels out.
So, the additive inverse is: \[ \frac{4}{13} + x = 0 \Rightarrow x = -\frac{4}{13} \] Answer: \(-\frac{4}{13}\)

iv. 0
\[ 0 + 0 = 0 \]
Answer: 0 (Additive inverse of 0 is 0 itself)

v. -2 \[ -2 + x = 0 \Rightarrow x = 2 \] Answer: 2

vi. 1 \[ 1 + x = 0 \Rightarrow x = -1 \] Answer: -1


Q8: Fill in the blanks

i. Additive inverse of \(\frac{-5}{-12}\) = __________ \[ \frac{-5}{-12} = \frac{5}{12} \quad \text{(negative sign cancels out)} \] So, its additive inverse is: \[ -\frac{5}{12} \] Answer: \(-\frac{5}{12}\)

ii. \(\frac{-5}{-12}+\) its additive inverse = __________ \[ \frac{-5}{-12} + (-\frac{5}{12}) = \frac{5}{12} + (-\frac{5}{12}) = 0 \] Answer: 0

iii. If \(\frac{a}{b}\) is additive inverse of \(\frac{-c}{d}\), then \(\frac{-c}{d}\) is additive inverse of _________.
Additive inverse works both ways: \[ \frac{a}{b} = -\left(\frac{-c}{d}\right) = \frac{c}{d} \Rightarrow \frac{-c}{d} \text{ is additive inverse of } \frac{a}{b} \] Answer: \(\frac{a}{b}\)

iv. And, so \(\frac{a}{b}+\frac{\left(-c\right)}{d}=\frac{(-c)}{d}+\frac{a}{b}=\)__________
If they are additive inverses: \[ \frac{a}{b} + \frac{-c}{d} = 0 \quad \text{and} \quad \frac{-c}{d} + \frac{a}{b} = 0 \] Answer: 0


Q9: State, true or false:

i. \(\frac{7}{9}=\frac{7+5}{9+5}\)
LHS: \(\frac{7}{9}\)
RHS: \(\frac{12}{14}\) \[ \frac{7}{9} \neq \frac{12}{14} \] Answer: False

ii. \(\frac{7}{9}=\frac{7-5}{9-5}\)
LHS: \(\frac{7}{9}\)
RHS: \(\frac{2}{4} = \frac{1}{2}\) \[ \frac{7}{9} \neq \frac{1}{2} \] Answer: False

iii. \(\frac{7}{9}=\frac{7\times5}{9\times5}\)
RHS: \(\frac{35}{45}\), which simplifies: \[ \frac{35}{45} = \frac{7}{9} \] So, both sides are equal.
Answer: True

iv. \(\frac{7}{9}=\frac{7\div5}{9\div5}\)
RHS: \(\frac{7 \div 5}{9 \div 5} = \frac{7/5}{9/5} = \frac{7}{9}\)
So, both sides are equal.
Answer: True

v. \(\frac{-5}{-12}\) is a negative rational number \[ \frac{-5}{-12} = \frac{5}{12} \quad \text{(negative sign cancels out)} \] This is a positive rational number.
Answer: False

vi. \(\frac{-13}{25}\) is smaller than \(\frac{-25}{13}\).
Compare: \(\frac{-13}{25} \approx -0.52\), \(\frac{-25}{13} \approx -1.92\) \[ -0.52 > -1.92 \Rightarrow \frac{-13}{25} \text{ is greater than } \frac{-25}{13} \] Answer: False


Q10: The weight of an empty fruit basket is \(2\frac{1}{3}\) kg. It contains \(5\frac{5}{6}\) kg grapes and \(8\frac{3}{8}\) kg mangoes. Find the total weight of basket with fruits.

Step 1: Convert mixed numbers to improper fractions \[ 2\frac{1}{3} = \frac{2 \times 3 + 1}{3} = \frac{7}{3} \] \[ 5\frac{5}{6} = \frac{5 \times 6 + 5}{6} = \frac{35}{6} \] \[ 8\frac{3}{8} = \frac{8 \times 8 + 3}{8} = \frac{67}{8} \]Step 2: Add all three rational numbers \[ \text{Total weight} = \frac{7}{3} + \frac{35}{6} + \frac{67}{8} \]Step 3: Find LCM of denominators 3, 6, and 8 \[ \text{LCM}(3,6,8) = 24 \]Step 4: Convert to like denominators \[ \frac{7}{3} = \frac{7 \times 8}{3 \times 8} = \frac{56}{24} \] \[ \frac{35}{6} = \frac{35 \times 4}{6 \times 4} = \frac{140}{24} \] \[ \frac{67}{8} = \frac{67 \times 3}{8 \times 3} = \frac{201}{24} \]
Step 5: Add all converted fractions \[ \frac{56}{24} + \frac{140}{24} + \frac{201}{24} = \frac{397}{24} \] Step 6: Convert improper fraction to mixed number \[ \frac{397}{24} = 16 \text{ remainder } 13 = 16\frac{13}{24} \]Answer: The total weight of the basket with fruits is \(16\frac{13}{24}\) kg

previous
next
Share the Post:

Related Posts

Fractions

Fractions

Step by Step solutions of RS Aggarwal ICSE Class-6 Maths chapter 4- Fractions by Goyal Brothers Prakashan is provided.

Read More

Leave a Comment

Your email address will not be published. Required fields are marked *

Join Our Newsletter

Scroll to Top